Class Random
- All Implemented Interfaces:
Serializable
Random
that we use for sampling, which is much faster
than SecureRandom
. This is necessary so that some security tools do not
flag our Random usage as potentially insecure.- See Also:
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionboolean
Returns the next pseudorandom, uniformly distributedboolean
value from this random number generator's sequence.void
nextBytes
(byte[] bytes) Generates random bytes and places them into a user-supplied byte array.double
Returns the next pseudorandom, uniformly distributeddouble
value between0.0
and1.0
from this random number generator's sequence.float
Returns the next pseudorandom, uniformly distributedfloat
value between0.0
and1.0
from this random number generator's sequence.int
nextInt()
Returns the next pseudorandom, uniformly distributedint
value from this random number generator's sequence.int
nextInt
(int bound) Returns a pseudorandom, uniformly distributedint
value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.long
nextLong()
Returns the next pseudorandom, uniformly distributedlong
value from this random number generator's sequence.void
setSeed
(long seed) Sets the seed of this random number generator using a singlelong
seed.
-
Constructor Details
-
Random
public Random()Creates a new random number generator. This constructor sets the seed of the random number generator to a value very likely to be distinct from any other invocation of this constructor. -
Random
public Random(long seed) Creates a new random number generator using a singlelong
seed. The seed is the initial value of the internal state of the pseudorandom number generator which is maintained by methodnext(int)
.The invocation
new Random(seed)
is equivalent to:Random rnd = new Random(); rnd.setSeed(seed);
- Parameters:
seed
- the initial seed- See Also:
-
-
Method Details
-
setSeed
public void setSeed(long seed) Sets the seed of this random number generator using a singlelong
seed. The general contract ofsetSeed
is that it alters the state of this random number generator object so as to be in exactly the same state as if it had just been created with the argumentseed
as a seed. The methodsetSeed
is implemented by classRandom
by atomically updating the seed to(seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)
The implementation of
setSeed
by classRandom
happens to use only 48 bits of the given seed. In general, however, an overriding method may use all 64 bits of thelong
argument as a seed value.- Parameters:
seed
- the initial seed
-
nextBytes
public void nextBytes(byte[] bytes) Generates random bytes and places them into a user-supplied byte array. The number of random bytes produced is equal to the length of the byte array.The method
nextBytes
is implemented by classRandom
as if by:public void nextBytes(byte[] bytes) { for (int i = 0; i < bytes.length; ) for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4); n-- > 0; rnd >>= 8) bytes[i++] = (byte)rnd; }
- Parameters:
bytes
- the byte array to fill with random bytes- Throws:
NullPointerException
- if the byte array is null- Since:
- 1.1
-
nextInt
public int nextInt()Returns the next pseudorandom, uniformly distributedint
value from this random number generator's sequence. The general contract ofnextInt
is that oneint
value is pseudorandomly generated and returned. All 232 possibleint
values are produced with (approximately) equal probability.The method
nextInt
is implemented by classRandom
as if by:public int nextInt() { return next(32); }
- Returns:
- the next pseudorandom, uniformly distributed
int
value from this random number generator's sequence
-
nextInt
public int nextInt(int bound) Returns a pseudorandom, uniformly distributedint
value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence. The general contract ofnextInt
is that oneint
value in the specified range is pseudorandomly generated and returned. Allbound
possibleint
values are produced with (approximately) equal probability. The methodnextInt(int bound)
is implemented by classRandom
as if by:public int nextInt(int bound) { if (bound <= 0) throw new IllegalArgumentException("bound must be positive"); if ((bound & -bound) == bound) // i.e., bound is a power of 2 return (int)((bound * (long)next(31)) >> 31); int bits, val; do { bits = next(31); val = bits % bound; } while (bits - val + (bound-1) < 0); return val; }
The hedge "approximately" is used in the foregoing description only because the next method is only approximately an unbiased source of independently chosen bits. If it were a perfect source of randomly chosen bits, then the algorithm shown would choose
int
values from the stated range with perfect uniformity.The algorithm is slightly tricky. It rejects values that would result in an uneven distribution (due to the fact that 2^31 is not divisible by n). The probability of a value being rejected depends on n. The worst case is n=2^30+1, for which the probability of a reject is 1/2, and the expected number of iterations before the loop terminates is 2.
The algorithm treats the case where n is a power of two specially: it returns the correct number of high-order bits from the underlying pseudo-random number generator. In the absence of special treatment, the correct number of low-order bits would be returned. Linear congruential pseudo-random number generators such as the one implemented by this class are known to have short periods in the sequence of values of their low-order bits. Thus, this special case greatly increases the length of the sequence of values returned by successive calls to this method if n is a small power of two.
- Parameters:
bound
- the upper bound (exclusive). Must be positive.- Returns:
- the next pseudorandom, uniformly distributed
int
value between zero (inclusive) andbound
(exclusive) from this random number generator's sequence - Throws:
IllegalArgumentException
- if bound is not positive- Since:
- 1.2
-
nextLong
public long nextLong()Returns the next pseudorandom, uniformly distributedlong
value from this random number generator's sequence. The general contract ofnextLong
is that onelong
value is pseudorandomly generated and returned.The method
nextLong
is implemented by classRandom
as if by:
Because classpublic long nextLong() { return ((long)next(32) << 32) + next(32); }
Random
uses a seed with only 48 bits, this algorithm will not return all possiblelong
values.- Returns:
- the next pseudorandom, uniformly distributed
long
value from this random number generator's sequence
-
nextBoolean
public boolean nextBoolean()Returns the next pseudorandom, uniformly distributedboolean
value from this random number generator's sequence. The general contract ofnextBoolean
is that oneboolean
value is pseudorandomly generated and returned. The valuestrue
andfalse
are produced with (approximately) equal probability.The method
nextBoolean
is implemented by classRandom
as if by:public boolean nextBoolean() { return next(1) != 0; }
- Returns:
- the next pseudorandom, uniformly distributed
boolean
value from this random number generator's sequence - Since:
- 1.2
-
nextFloat
public float nextFloat()Returns the next pseudorandom, uniformly distributedfloat
value between0.0
and1.0
from this random number generator's sequence.The general contract of
nextFloat
is that onefloat
value, chosen (approximately) uniformly from the range0.0f
(inclusive) to1.0f
(exclusive), is pseudorandomly generated and returned. All 224 possiblefloat
values of the form m x 2-24, where m is a positive integer less than 224, are produced with (approximately) equal probability.The method
nextFloat
is implemented by classRandom
as if by:public float nextFloat() { return next(24) / ((float)(1 << 24)); }
The hedge "approximately" is used in the foregoing description only because the next method is only approximately an unbiased source of independently chosen bits. If it were a perfect source of randomly chosen bits, then the algorithm shown would choose
float
values from the stated range with perfect uniformity.[In early versions of Java, the result was incorrectly calculated as:
This might seem to be equivalent, if not better, but in fact it introduced a slight nonuniformity because of the bias in the rounding of floating-point numbers: it was slightly more likely that the low-order bit of the significand would be 0 than that it would be 1.]return next(30) / ((float)(1 << 30));
- Returns:
- the next pseudorandom, uniformly distributed
float
value between0.0
and1.0
from this random number generator's sequence
-
nextDouble
public double nextDouble()Returns the next pseudorandom, uniformly distributeddouble
value between0.0
and1.0
from this random number generator's sequence.The general contract of
nextDouble
is that onedouble
value, chosen (approximately) uniformly from the range0.0d
(inclusive) to1.0d
(exclusive), is pseudorandomly generated and returned.The method
nextDouble
is implemented by classRandom
as if by:public double nextDouble() { return (((long)next(26) << 27) + next(27)) / (double)(1L << 53); }
The hedge "approximately" is used in the foregoing description only because the
next
method is only approximately an unbiased source of independently chosen bits. If it were a perfect source of randomly chosen bits, then the algorithm shown would choosedouble
values from the stated range with perfect uniformity.[In early versions of Java, the result was incorrectly calculated as:
This might seem to be equivalent, if not better, but in fact it introduced a large nonuniformity because of the bias in the rounding of floating-point numbers: it was three times as likely that the low-order bit of the significand would be 0 than that it would be 1! This nonuniformity probably doesn't matter much in practice, but we strive for perfection.]return (((long)next(27) << 27) + next(27)) / (double)(1L << 54);
- Returns:
- the next pseudorandom, uniformly distributed
double
value between0.0
and1.0
from this random number generator's sequence - See Also:
-