relay_threading/pool.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
use std::future::Future;
use std::io;
use std::panic::AssertUnwindSafe;
use std::sync::Arc;
use futures::future::BoxFuture;
use futures::FutureExt;
use crate::builder::AsyncPoolBuilder;
use crate::metrics::AsyncPoolMetrics;
use crate::multiplexing::Multiplexed;
use crate::{PanicHandler, ThreadMetrics};
/// Default name of the pool.
const DEFAULT_POOL_NAME: &str = "unnamed";
/// [`AsyncPool`] is a thread-based executor that runs asynchronous tasks on dedicated worker threads.
///
/// The pool collects tasks through a bounded channel and distributes them among threads, each of which runs its own
/// Tokio executor. This design enables controlled concurrency and efficient use of system resources.
#[derive(Debug)]
pub struct AsyncPool<F> {
/// Name of the pool.
name: &'static str,
/// Transmission containing all tasks.
tx: flume::Sender<F>,
/// The maximum number of tasks that are expected to run concurrently at any point in time.
max_tasks: u64,
/// Vector containing all the metrics collected individually in each thread.
threads_metrics: Arc<Vec<Arc<ThreadMetrics>>>,
}
impl<F> AsyncPool<F> {
/// Returns the `name` of the [`AsyncPool`].
pub fn name(&self) -> &'static str {
self.name
}
/// Returns the [`AsyncPoolMetrics`] that are updated by the pool.
pub fn metrics(&self) -> AsyncPoolMetrics {
AsyncPoolMetrics {
max_tasks: self.max_tasks,
queue_size: self.tx.len() as u64,
threads_metrics: &self.threads_metrics,
}
}
}
impl<F> AsyncPool<F>
where
F: Future<Output = ()> + Send + 'static,
{
/// Creates a new [`AsyncPool`] based on the configuration specified by [`AsyncPoolBuilder`].
///
/// This method initializes the dedicated worker threads and configures each executor with the defined
/// concurrency limits.
pub fn new<S>(mut builder: AsyncPoolBuilder<S>) -> io::Result<Self>
where
S: ThreadSpawn,
{
let pool_name = builder.pool_name.unwrap_or(DEFAULT_POOL_NAME);
let (tx, rx) = flume::bounded(builder.num_threads * 2);
let mut threads_metrics = Vec::with_capacity(builder.num_threads);
for thread_id in 0..builder.num_threads {
let rx = rx.clone();
let thread_name: Option<String> = builder.thread_name.as_mut().map(|f| f(thread_id));
let metrics = Arc::new(ThreadMetrics::default());
let thread = Thread {
id: thread_id,
max_concurrency: builder.max_concurrency,
name: thread_name.clone(),
runtime: builder.runtime.clone(),
panic_handler: builder.thread_panic_handler.clone(),
task: Multiplexed::new(
pool_name,
builder.max_concurrency,
rx.into_stream(),
builder.task_panic_handler.clone(),
metrics.clone(),
)
.boxed(),
};
threads_metrics.push(metrics);
builder.spawn_handler.spawn(thread)?;
}
Ok(Self {
name: pool_name,
tx,
max_tasks: (builder.num_threads * builder.max_concurrency) as u64,
threads_metrics: Arc::new(threads_metrics),
})
}
/// Schedules a future for execution within the [`AsyncPool`].
///
/// The task is added to the pool's internal queue to be executed by an available worker thread.
///
/// # Panics
///
/// This method panics if all receivers have been dropped which can happen when all threads of
/// the pool panicked.
pub fn spawn(&self, future: F) {
assert!(
self.tx.send(future).is_ok(),
"failed to schedule task: all worker threads have terminated (either none were spawned or all have panicked)"
);
}
/// Asynchronously enqueues a future for execution within the [`AsyncPool`].
///
/// This method awaits until the task is successfully added to the internal queue.
///
/// # Panics
///
/// This method panics if all receivers have been dropped which can happen when all threads of
/// the pool panicked.
pub async fn spawn_async(&self, future: F) {
assert!(
self.tx.send_async(future).await.is_ok(),
"failed to schedule task: all worker threads have terminated (either none were spawned or all have panicked)"
);
}
}
impl<F> Clone for AsyncPool<F> {
fn clone(&self) -> Self {
Self {
name: self.name,
tx: self.tx.clone(),
max_tasks: self.max_tasks,
threads_metrics: self.threads_metrics.clone(),
}
}
}
/// [`Thread`] represents a dedicated worker thread within an [`AsyncPool`] that executes scheduled tasks.
pub struct Thread {
id: usize,
max_concurrency: usize,
name: Option<String>,
runtime: tokio::runtime::Handle,
panic_handler: Option<Arc<PanicHandler>>,
task: BoxFuture<'static, ()>,
}
impl Thread {
/// Returns the unique index assigned to this [`Thread`].
///
/// The index can help identify the thread during debugging or logging.
pub fn id(&self) -> usize {
self.id
}
/// Returns the maximum number of concurrent tasks permitted on this [`Thread`].
///
/// This reflects the concurrency limit configured via the [`AsyncPoolBuilder`].
pub fn max_concurrency(&self) -> usize {
self.max_concurrency
}
/// Returns the human-readable name of this [`Thread`], if one was set.
///
/// Thread names can assist in monitoring and debugging the execution environment.
pub fn name(&self) -> Option<&str> {
self.name.as_deref()
}
}
impl Thread {
/// Runs the task multiplexer associated with this [`Thread`].
///
/// This method drives the execution of tasks on the worker thread.
///
/// # Panics
///
/// Panics are either handled by the custom handler or propagated if no handler is specified.
pub fn run(self) {
let result =
std::panic::catch_unwind(AssertUnwindSafe(|| self.runtime.block_on(self.task)));
match (self.panic_handler, result) {
// Panic handler and error, we swallow the panic and invoke the callback.
(Some(panic_handler), Err(error)) => {
panic_handler(error);
}
// No panic handler and error, we propagate the panic.
(None, Err(error)) => {
std::panic::resume_unwind(error);
}
// Otherwise, we do nothing.
(_, Ok(())) => {}
}
}
}
/// [`ThreadSpawn`] defines how threads are spawned in an [`AsyncPool`].
///
/// This trait allows customization of thread creation (for example, setting names or adjusting stack sizes)
/// without altering the core functionality of the pool.
pub trait ThreadSpawn {
/// Spawns a new thread using the provided configuration.
fn spawn(&mut self, thread: Thread) -> io::Result<()>;
}
/// [`DefaultSpawn`] is the default implementation of [`ThreadSpawn`] that delegates to the system's
/// standard thread creation mechanism.
///
/// It applies any provided thread name using the standard thread builder.
#[derive(Clone)]
pub struct DefaultSpawn;
impl ThreadSpawn for DefaultSpawn {
fn spawn(&mut self, thread: Thread) -> io::Result<()> {
let mut b = std::thread::Builder::new();
if let Some(name) = thread.name() {
b = b.name(name.to_owned());
}
b.spawn(|| thread.run())?;
Ok(())
}
}
/// [`CustomSpawn`] is an alternative implementation of [`ThreadSpawn`] that uses a user-supplied closure
/// for custom thread configuration.
///
/// This allows for fine-grained control over thread properties, enabling application-specific setups.
#[derive(Clone)]
pub struct CustomSpawn<B>(B);
impl<B> CustomSpawn<B> {
/// Creates a new instance of [`CustomSpawn`] with the specified configuration closure.
pub fn new(spawn_handler: B) -> Self {
CustomSpawn(spawn_handler)
}
}
impl<B> ThreadSpawn for CustomSpawn<B>
where
B: FnMut(Thread) -> io::Result<()>,
{
/// Applies the custom configuration closure when spawning a new thread.
fn spawn(&mut self, thread: Thread) -> io::Result<()> {
self.0(thread)
}
}
#[cfg(test)]
mod tests {
use std::future::Future;
use std::panic::AssertUnwindSafe;
use std::sync::atomic::AtomicBool;
use std::sync::{
atomic::{AtomicUsize, Ordering},
Arc,
};
use std::time::{Duration, Instant};
use futures::future::BoxFuture;
use futures::FutureExt;
use tokio::runtime::Runtime;
use tokio::sync::Semaphore;
use tokio::{runtime::Handle, time::sleep};
use crate::builder::AsyncPoolBuilder;
use crate::{AsyncPool, Thread};
struct TestBarrier {
semaphore: Arc<Semaphore>,
count: u32,
}
impl TestBarrier {
async fn new(count: u32) -> Self {
Self {
semaphore: Arc::new(Semaphore::new(count as usize)),
count,
}
}
async fn spawn<F, Fut>(&self, pool: &AsyncPool<BoxFuture<'static, ()>>, f: F)
where
F: FnOnce() -> Fut + Send + 'static,
Fut: Future<Output = ()> + Send + 'static,
{
let semaphore = self.semaphore.clone();
let permit = semaphore.acquire_owned().await.unwrap();
pool.spawn_async(
async move {
f().await;
drop(permit);
}
.boxed(),
)
.await;
}
async fn wait(&self) {
let _ = self.semaphore.acquire_many(self.count).await.unwrap();
}
}
#[tokio::test]
async fn test_async_pool_executes_all_tasks() {
let pool = AsyncPoolBuilder::new(Handle::current())
.num_threads(1)
.max_concurrency(2)
.build()
.unwrap();
let counter = Arc::new(AtomicUsize::new(0));
let barrier = TestBarrier::new(20).await;
// Spawn 20 tasks that wait briefly and then update the counter.
for _ in 0..20 {
let counter_clone = counter.clone();
barrier
.spawn(&pool, move || async move {
sleep(Duration::from_millis(50)).await;
counter_clone.fetch_add(1, Ordering::SeqCst);
})
.await;
}
barrier.wait().await;
assert_eq!(counter.load(Ordering::SeqCst), 20);
}
#[tokio::test]
async fn test_async_pool_executes_all_tasks_concurrently_with_single_thread() {
let pool = AsyncPoolBuilder::new(Handle::current())
.num_threads(1)
.max_concurrency(2)
.build()
.unwrap();
let start = Instant::now();
let barrier = TestBarrier::new(2).await;
// Spawn 2 tasks that each sleep for 200ms.
for _ in 0..2 {
barrier
.spawn(&pool, || async {
sleep(Duration::from_millis(200)).await;
})
.await;
}
barrier.wait().await;
let elapsed = start.elapsed();
// If running concurrently, the overall time should be near 200ms (with some allowance).
assert!(
elapsed < Duration::from_millis(250),
"Elapsed time was too high: {:?}",
elapsed
);
}
#[tokio::test]
async fn test_async_pool_executes_all_tasks_concurrently_with_multiple_threads() {
let pool = AsyncPoolBuilder::new(Handle::current())
.num_threads(2)
.max_concurrency(1)
.build()
.unwrap();
let start = Instant::now();
let barrier = TestBarrier::new(2).await;
// Spawn 2 tasks that each sleep for 200ms.
for _ in 0..2 {
barrier
.spawn(&pool, || async {
sleep(Duration::from_millis(200)).await;
})
.await;
}
barrier.wait().await;
let elapsed = start.elapsed();
// If running concurrently, the overall time should be near 200ms (with some allowance).
assert!(
elapsed < Duration::from_millis(250),
"Elapsed time was too high: {:?}",
elapsed
);
}
#[test]
fn test_thread_panic_handling() {
let runtime = Runtime::new().unwrap();
let has_panicked = Arc::new(AtomicBool::new(false));
let has_panicked_clone = has_panicked.clone();
let panic_handler = move |_| {
has_panicked_clone.store(true, Ordering::SeqCst);
};
Thread {
id: 0,
max_concurrency: 1,
name: Some("test-thread".into()),
runtime: runtime.handle().clone(),
panic_handler: Some(Arc::new(panic_handler)),
task: async move {
panic!("panicked");
}
.boxed(),
}
.run();
assert!(has_panicked.load(Ordering::SeqCst));
}
#[tokio::test]
async fn test_spawn_panics_if_no_threads_are_available() {
let pool = AsyncPoolBuilder::new(Handle::current())
.num_threads(0)
.max_concurrency(1)
.build()
.unwrap();
let result = std::panic::catch_unwind(AssertUnwindSafe(|| {
pool.spawn(async move {});
}));
assert!(result.is_err());
}
}