relay_threading/multiplexing.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
use std::future::Future;
use std::panic::AssertUnwindSafe;
use std::pin::Pin;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::task::{Context, Poll};
use futures::future::CatchUnwind;
use futures::stream::{FusedStream, FuturesUnordered, Stream};
use futures::FutureExt;
use pin_project_lite::pin_project;
use tokio::task::Unconstrained;
use crate::{PanicHandler, ThreadMetrics};
pin_project! {
/// Manages concurrent execution of asynchronous tasks.
///
/// This internal structure collects and drives futures concurrently, invoking a panic handler (if provided)
/// when a task encounters a panic.
struct Tasks<F> {
#[pin]
futures: FuturesUnordered<Unconstrained<CatchUnwind<AssertUnwindSafe<F>>>>,
panic_handler: Option<Arc<PanicHandler>>,
}
}
impl<F> Tasks<F> {
/// Creates a new task manager.
///
/// This internal constructor initializes a new collection for tracking asynchronous tasks.
fn new(panic_handler: Option<Arc<PanicHandler>>) -> Self {
Self {
futures: FuturesUnordered::new(),
panic_handler,
}
}
/// Returns the number of tasks currently scheduled for execution.
fn len(&self) -> usize {
self.futures.len()
}
/// Returns whether there are no tasks scheduled.
fn is_empty(&self) -> bool {
self.len() == 0
}
}
impl<F> Tasks<F>
where
F: Future<Output = ()>,
{
/// Adds a future to the collection for concurrent execution.
fn push(&mut self, future: F) {
let future = AssertUnwindSafe(future).catch_unwind();
self.futures.push(tokio::task::unconstrained(future));
}
/// Drives the execution of collected tasks until a pending state is encountered.
///
/// If a future panics and a panic handler is provided, the handler is invoked.
/// Otherwise, the panic is propagated.
///
/// # Panics
///
/// Panics are either handled by the custom handler or propagated if no handler is specified.
fn poll_tasks_until_pending(self: Pin<&mut Self>, cx: &mut Context<'_>) {
let mut this = self.project();
loop {
// If the unordered pool of futures is terminated, we stop polling.
if this.futures.is_terminated() {
return;
}
// If we don't get a Ready(Some(_)), it means we are now polling a pending future or the
// stream has ended, in that case we return.
let Poll::Ready(Some(result)) = this.futures.as_mut().poll_next(cx) else {
return;
};
// If there is an error, it means that the future has panicked, we want to notify this.
match (this.panic_handler.as_ref(), result) {
// Panic handler and error, we swallow the panic and invoke the callback.
(Some(panic_handler), Err(error)) => {
panic_handler(error);
}
// No panic handler and error, we propagate the panic.
(None, Err(error)) => {
std::panic::resume_unwind(error);
}
// Otherwise, we do nothing.
(_, Ok(())) => {}
}
}
}
}
pin_project! {
/// [`Multiplexed`] is a future that concurrently schedules asynchronous tasks from a stream while ensuring that
/// the number of concurrently executing tasks does not exceed a specified limit.
///
/// This multiplexer is primarily used by the [`AsyncPool`] to manage task execution on worker threads.
pub struct Multiplexed<S, F> {
pool_name: &'static str,
max_concurrency: usize,
#[pin]
rx: S,
#[pin]
tasks: Tasks<F>,
metrics: Arc<ThreadMetrics>
}
}
impl<S, F> Multiplexed<S, F>
where
S: Stream<Item = F>,
{
/// Creates a new [`Multiplexed`] instance with a defined concurrency limit and a stream of tasks.
///
/// Tasks from the stream will be scheduled for execution concurrently, and an optional panic handler
/// can be provided to manage errors during task execution.
pub fn new(
pool_name: &'static str,
max_concurrency: usize,
rx: S,
panic_handler: Option<Arc<PanicHandler>>,
metrics: Arc<ThreadMetrics>,
) -> Self {
Self {
pool_name,
max_concurrency,
rx,
tasks: Tasks::new(panic_handler),
metrics,
}
}
}
impl<S, F> Future for Multiplexed<S, F>
where
S: FusedStream<Item = F>,
F: Future<Output = ()>,
{
type Output = ();
/// Polls the [`Multiplexed`] future to drive task execution.
///
/// This method repeatedly schedules new tasks from the stream while enforcing the concurrency limit.
/// It completes when the stream is exhausted and no active tasks remain.
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.project();
loop {
// We report before polling since we might have only blocking tasks meaning that the
// measure after the `poll_tasks_until_pending` will return 0, since all futures will
// be completed.
let before_len = this.tasks.len() as u64;
this.metrics
.active_tasks
.store(before_len, Ordering::Relaxed);
this.tasks.as_mut().poll_tasks_until_pending(cx);
// We also want to report after polling since we might have finished polling some futures
// and some not.
let after_len = this.tasks.len() as u64;
this.metrics
.active_tasks
.store(after_len, Ordering::Relaxed);
// We calculate how many tasks have been driven to completion.
if let Some(finished_tasks) = before_len.checked_sub(after_len) {
this.metrics
.finished_tasks
.fetch_add(finished_tasks, Ordering::Relaxed);
}
// If we can't get anymore tasks, and we don't have anything else to process, we report
// ready. Otherwise, if we have something to process, we report pending.
if this.tasks.is_empty() && this.rx.is_terminated() {
return Poll::Ready(());
} else if this.rx.is_terminated() {
return Poll::Pending;
}
// If we could accept tasks, but we don't have space we report pending.
if this.tasks.len() >= *this.max_concurrency {
return Poll::Pending;
}
// At this point, we are free to start driving another future.
match this.rx.as_mut().poll_next(cx) {
Poll::Ready(Some(task)) => {
this.tasks.push(task);
}
// The stream is exhausted and there are no remaining tasks.
Poll::Ready(None) if this.tasks.is_empty() => return Poll::Ready(()),
// The stream is exhausted but tasks remain active. Now we need to make sure we
// stop polling the stream and just process tasks.
Poll::Ready(None) => return Poll::Pending,
Poll::Pending => return Poll::Pending,
}
}
}
}
#[cfg(test)]
mod tests {
use futures::{future::BoxFuture, FutureExt};
use std::future;
use std::sync::atomic::AtomicBool;
use std::sync::{
atomic::{AtomicUsize, Ordering},
Arc, Mutex,
};
use std::time::Duration;
use super::*;
fn future_with(block: impl FnOnce() + Send + 'static) -> BoxFuture<'static, ()> {
let fut = async {
// Yield to allow a pending state during polling.
tokio::task::yield_now().await;
block();
};
fut.boxed()
}
fn mock_metrics() -> Arc<ThreadMetrics> {
Arc::new(ThreadMetrics::default())
}
#[test]
fn test_multiplexer_with_no_futures() {
let (_, rx) = flume::bounded::<BoxFuture<'static, _>>(10);
futures::executor::block_on(Multiplexed::new(
"my_pool",
1,
rx.into_stream(),
None,
mock_metrics(),
));
}
#[test]
fn test_multiplexer_with_panic_handler_panicking_future() {
let panic_handler_called = Arc::new(AtomicBool::new(false));
let count = Arc::new(AtomicUsize::new(0));
let (tx, rx) = flume::bounded(10);
let count_clone = count.clone();
tx.send(future_with(move || {
count_clone.fetch_add(1, Ordering::SeqCst);
panic!("panicked");
}))
.unwrap();
drop(tx);
let panic_handler_called_clone = panic_handler_called.clone();
let panic_handler = move |_| {
panic_handler_called_clone.store(true, Ordering::SeqCst);
};
futures::executor::block_on(Multiplexed::new(
"my_pool",
1,
rx.into_stream(),
Some(Arc::new(panic_handler)),
mock_metrics(),
));
// The count is expected to have been incremented and the handler called.
assert_eq!(count.load(Ordering::SeqCst), 1);
assert!(panic_handler_called.load(Ordering::SeqCst));
}
#[test]
fn test_multiplexer_with_no_panic_handler_panicking_future() {
let count = Arc::new(AtomicUsize::new(0));
let (tx, rx) = flume::bounded(10);
let count_clone = count.clone();
tx.send(future_with(move || {
count_clone.fetch_add(1, Ordering::SeqCst);
panic!("panicked");
}))
.unwrap();
drop(tx);
let result = std::panic::catch_unwind(AssertUnwindSafe(|| {
futures::executor::block_on(Multiplexed::new(
"my_pool",
1,
rx.into_stream(),
None,
mock_metrics(),
))
}));
// The count is expected to have been incremented and the handler called.
assert_eq!(count.load(Ordering::SeqCst), 1);
assert!(result.is_err());
}
#[test]
fn test_multiplexer_with_one_concurrency_and_one_future() {
let count = Arc::new(AtomicUsize::new(0));
let (tx, rx) = flume::bounded(10);
let count_clone = count.clone();
tx.send(future_with(move || {
count_clone.fetch_add(1, Ordering::SeqCst);
}))
.unwrap();
drop(tx);
futures::executor::block_on(Multiplexed::new(
"my_pool",
1,
rx.into_stream(),
None,
mock_metrics(),
));
// The count is expected to have been incremented.
assert_eq!(count.load(Ordering::SeqCst), 1);
}
#[test]
fn test_multiplexer_with_one_concurrency_and_multiple_futures() {
let entries = Arc::new(Mutex::new(Vec::new()));
let (tx, rx) = flume::bounded(10);
for i in 0..5 {
let entries_clone = entries.clone();
tx.send(future_with(move || {
entries_clone.lock().unwrap().push(i);
}))
.unwrap();
}
drop(tx);
futures::executor::block_on(Multiplexed::new(
"my_pool",
1,
rx.into_stream(),
None,
mock_metrics(),
));
// The order of completion is expected to match the order of submission.
assert_eq!(*entries.lock().unwrap(), (0..5).collect::<Vec<_>>());
}
#[test]
fn test_multiplexer_with_multiple_concurrency_and_one_future() {
let count = Arc::new(AtomicUsize::new(0));
let (tx, rx) = flume::bounded(10);
let count_clone = count.clone();
tx.send(future_with(move || {
count_clone.fetch_add(1, Ordering::SeqCst);
}))
.unwrap();
drop(tx);
futures::executor::block_on(Multiplexed::new(
"my_pool",
5,
rx.into_stream(),
None,
mock_metrics(),
));
// The count is expected to have been incremented.
assert_eq!(count.load(Ordering::SeqCst), 1);
}
#[test]
fn test_multiplexer_with_multiple_concurrency_and_multiple_futures() {
let entries = Arc::new(Mutex::new(Vec::new()));
let (tx, rx) = flume::bounded(10);
for i in 0..5 {
let entries_clone = entries.clone();
tx.send(future_with(move || {
entries_clone.lock().unwrap().push(i);
}))
.unwrap();
}
drop(tx);
futures::executor::block_on(Multiplexed::new(
"my_pool",
5,
rx.into_stream(),
None,
mock_metrics(),
));
// The order of completion is expected to be the same as the order of submission.
assert_eq!(*entries.lock().unwrap(), (0..5).collect::<Vec<_>>());
}
#[test]
fn test_multiplexer_with_multiple_concurrency_and_less_multiple_futures() {
let entries = Arc::new(Mutex::new(Vec::new()));
let (tx, rx) = flume::bounded(10);
// We send 3 futures with a concurrency of 5, to make sure that if the stream returns
// `Poll::Ready(None)` the system will stop polling from the stream and continue driving
// the remaining futures.
for i in 0..3 {
let entries_clone = entries.clone();
tx.send(future_with(move || {
entries_clone.lock().unwrap().push(i);
}))
.unwrap();
}
drop(tx);
futures::executor::block_on(Multiplexed::new(
"my_pool",
5,
rx.into_stream(),
None,
mock_metrics(),
));
// The order of completion is expected to be the same as the order of submission.
assert_eq!(*entries.lock().unwrap(), (0..3).collect::<Vec<_>>());
}
#[test]
fn test_multiplexer_with_multiple_concurrency_and_multiple_futures_from_multiple_threads() {
let entries = Arc::new(Mutex::new(Vec::new()));
let (tx, rx) = flume::bounded(10);
let mut handles = vec![];
for i in 0..5 {
let entries_clone = entries.clone();
let tx_clone = tx.clone();
handles.push(std::thread::spawn(move || {
tx_clone
.send(future_with(move || {
entries_clone.lock().unwrap().push(i);
}))
.unwrap();
}));
}
for handle in handles {
handle.join().unwrap();
}
drop(tx);
futures::executor::block_on(Multiplexed::new(
"my_pool",
5,
rx.into_stream(),
None,
mock_metrics(),
));
// The order of completion may vary; verify that all expected elements are present.
let mut entries = entries.lock().unwrap();
entries.sort();
assert_eq!(*entries, (0..5).collect::<Vec<_>>());
}
#[test]
fn test_catch_unwind_future_handles_panics() {
let future = AssertUnwindSafe(async {
panic!("panicked");
})
.catch_unwind();
// The future should complete without propagating the panic but propagating the error.
assert!(futures::executor::block_on(future).is_err());
// Verify that non-panicking tasks complete normally.
let future = AssertUnwindSafe(async {
// A normal future that completes.
})
.catch_unwind();
// The future should successfully complete.
assert!(futures::executor::block_on(future).is_ok());
}
#[tokio::test]
async fn test_multiplexer_emits_metrics() {
let (tx, rx) = flume::bounded::<BoxFuture<'static, _>>(10);
let metrics = mock_metrics();
tx.send(future::pending().boxed()).unwrap();
drop(tx);
// We spawn the future, which will be indefinitely pending since it's never woken up.
#[allow(clippy::disallowed_methods)]
tokio::spawn(Multiplexed::new(
"my_pool",
1,
rx.into_stream(),
None,
metrics.clone(),
));
// We sleep to let the pending be processed by the `Multiplexed` so that the metric is then
// correctly emitted.
tokio::time::sleep(Duration::from_millis(1)).await;
// We expect that now we have 1 active task, the one that is indefinitely pending.
assert_eq!(metrics.active_tasks.load(Ordering::Relaxed), 1);
// An indefinitely pending task is never finished.
assert_eq!(metrics.finished_tasks.load(Ordering::Relaxed), 0);
}
}