relay_system/
service.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
use std::fmt;
use std::future::Future;
use std::marker::PhantomData;
use std::pin::Pin;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::Arc;
use std::task::{Context, Poll};
use std::time::Duration;

use futures::future::Shared;
use futures::stream::FuturesUnordered;
use futures::{FutureExt, StreamExt};
use tokio::sync::{mpsc, oneshot};
use tokio::task::JoinHandle;
use tokio::time::MissedTickBehavior;

use crate::statsd::SystemGauges;
use crate::{spawn, TaskId};

/// Interval for recording backlog metrics on service channels.
const BACKLOG_INTERVAL: Duration = Duration::from_secs(1);

/// A message interface for [services](Service).
///
/// Most commonly, this interface is an enumeration of messages, but it can also be implemented on a
/// single message. For each individual message, this type needs to implement the [`FromMessage`]
/// trait.
///
/// # Implementating Interfaces
///
/// There are three main ways to implement interfaces, which depends on the number of messages and
/// their return values. The simplest way is an interface consisting of a **single message** with
/// **no return value**. For this case, use the message directly as interface and choose
/// `NoResponse` as response:
///
/// ```
/// use relay_system::{FromMessage, Interface, NoResponse};
///
/// #[derive(Debug)]
/// pub struct MyMessage;
///
/// impl Interface for MyMessage {}
///
/// impl FromMessage<Self> for MyMessage {
///     type Response = NoResponse;
///
///     fn from_message(message: Self, _: ()) -> Self {
///         message
///     }
/// }
/// ```
///
/// If there is a **single message with a return value**, implement the interface as a wrapper for
/// the message and the return [`Sender`]:
///
/// ```
/// use relay_system::{AsyncResponse, FromMessage, Interface, Sender};
///
/// #[derive(Debug)]
/// pub struct MyMessage;
///
/// #[derive(Debug)]
/// pub struct MyInterface(MyMessage, Sender<bool>);
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<MyMessage> for MyInterface {
///     type Response = AsyncResponse<bool>;
///
///     fn from_message(message: MyMessage, sender: Sender<bool>) -> Self {
///         Self(message, sender)
///     }
/// }
/// ```
///
/// Finally, interfaces with **multiple messages** of any kind can most commonly be implemented
/// through an enumeration for every message. The variants of messages with return values need a
/// `Sender` again:
///
/// ```
/// use relay_system::{AsyncResponse, FromMessage, Interface, NoResponse, Sender};
///
/// #[derive(Debug)]
/// pub struct GetFlag;
///
/// #[derive(Debug)]
/// pub struct SetFlag(pub bool);
///
/// #[derive(Debug)]
/// pub enum MyInterface {
///     Get(GetFlag, Sender<bool>),
///     Set(SetFlag),
/// }
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<GetFlag> for MyInterface {
///     type Response = AsyncResponse<bool>;
///
///     fn from_message(message: GetFlag, sender: Sender<bool>) -> Self {
///         Self::Get(message, sender)
///     }
/// }
///
/// impl FromMessage<SetFlag> for MyInterface {
///     type Response = NoResponse;
///
///     fn from_message(message: SetFlag, _: ()) -> Self {
///         Self::Set(message)
///     }
/// }
/// ```
///
/// # Requirements
///
/// Interfaces are meant to be sent to services via channels. As such, they need to be both `Send`
/// and `'static`. It is highly encouraged to implement `Debug` on all interfaces and their
/// messages.
pub trait Interface: Send + 'static {}

/// Services without messages can use `()` as their interface.
impl Interface for () {}

/// An error when [sending](Addr::send) a message to a service fails.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct SendError;

impl fmt::Display for SendError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "failed to send message to service")
    }
}

impl std::error::Error for SendError {}

/// Response behavior of an [`Interface`] message.
///
/// It defines how a service handles and responds to interface messages, such as through
/// asynchronous responses or fire-and-forget without responding. [`FromMessage`] implementations
/// declare this behavior on the interface.
///
/// See [`FromMessage`] for more information on how to use this trait.
pub trait MessageResponse {
    /// Sends responses from the service back to the waiting recipient.
    type Sender;

    /// The type returned from [`Addr::send`].
    ///
    /// This type can be either synchronous and asynchronous based on the responder.
    type Output;

    /// Returns the response channel for an interface message.
    fn channel() -> (Self::Sender, Self::Output);
}

/// The request when sending an asynchronous message to a service.
///
/// This is returned from [`Addr::send`] when the message responds asynchronously through
/// [`AsyncResponse`]. It is a future that should be awaited. The message still runs to
/// completion if this future is dropped.
pub struct Request<T>(oneshot::Receiver<T>);

impl<T> fmt::Debug for Request<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Request").finish_non_exhaustive()
    }
}

impl<T> Future for Request<T> {
    type Output = Result<T, SendError>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> std::task::Poll<Self::Output> {
        Pin::new(&mut self.0)
            .poll(cx)
            .map(|r| r.map_err(|_| SendError))
    }
}

/// Sends a message response from a service back to the waiting [`Request`].
///
/// The sender is part of an [`AsyncResponse`] and should be moved into the service interface
/// type. If this sender is dropped without calling [`send`](Self::send), the request fails with
/// [`SendError`].
pub struct Sender<T>(oneshot::Sender<T>);

impl<T> fmt::Debug for Sender<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Sender")
            .field("open", &!self.0.is_closed())
            .finish()
    }
}

impl<T> Sender<T> {
    /// Sends the response value and closes the [`Request`].
    ///
    /// This silenly drops the value if the request has been dropped.
    pub fn send(self, value: T) {
        self.0.send(value).ok();
    }
}

/// Message response resulting in an asynchronous [`Request`].
///
/// The sender must be placed on the interface in [`FromMessage::from_message`].
///
/// See [`FromMessage`] and [`Service`] for implementation advice and examples.
pub struct AsyncResponse<T>(PhantomData<T>);

impl<T> fmt::Debug for AsyncResponse<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("AsyncResponse")
    }
}

impl<T> MessageResponse for AsyncResponse<T> {
    type Sender = Sender<T>;
    type Output = Request<T>;

    fn channel() -> (Self::Sender, Self::Output) {
        let (tx, rx) = oneshot::channel();
        (Sender(tx), Request(rx))
    }
}

/// Message response for fire-and-forget messages with no output.
///
/// There is no sender associated to this response. When implementing [`FromMessage`], the sender
/// can be ignored.
///
/// See [`FromMessage`] and [`Service`] for implementation advice and examples.
pub struct NoResponse;

impl fmt::Debug for NoResponse {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("NoResponse")
    }
}

impl MessageResponse for NoResponse {
    type Sender = ();
    type Output = ();

    fn channel() -> (Self::Sender, Self::Output) {
        ((), ())
    }
}

/// Initial response to a [`BroadcastRequest`].
#[derive(Debug)]
enum InitialResponse<T> {
    /// The response value is immediately ready.
    ///
    /// The sender did not attach to a broadcast channel and instead resolved the requested value
    /// immediately. The request is now ready and can resolve. See [`BroadcastChannel::attach`].
    Ready(T),
    /// The sender is attached to a channel that needs to be polled.
    Poll(Shared<oneshot::Receiver<T>>),
}

/// States of a [`BroadcastRequest`].
enum BroadcastState<T> {
    /// The request is waiting for an initial response.
    Pending(oneshot::Receiver<InitialResponse<T>>),
    /// The request is attached to a [`BroadcastChannel`].
    Attached(Shared<oneshot::Receiver<T>>),
}

/// The request when sending an asynchronous message to a service.
///
/// This is returned from [`Addr::send`] when the message responds asynchronously through
/// [`BroadcastResponse`]. It is a future that should be awaited. The message still runs to
/// completion if this future is dropped.
///
/// # Panics
///
/// This future is not fused and panics if it is polled again after it has resolved.
pub struct BroadcastRequest<T>(BroadcastState<T>)
where
    T: Clone;

impl<T: Clone> Future for BroadcastRequest<T> {
    type Output = Result<T, SendError>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        Poll::Ready(loop {
            match self.0 {
                BroadcastState::Pending(ref mut pending) => {
                    match futures::ready!(Pin::new(pending).poll(cx)) {
                        Ok(InitialResponse::Ready(value)) => break Ok(value),
                        Ok(InitialResponse::Poll(shared)) => {
                            self.0 = BroadcastState::Attached(shared)
                        }
                        Err(_) => break Err(SendError),
                    }
                }
                BroadcastState::Attached(ref mut shared) => {
                    match futures::ready!(Pin::new(shared).poll(cx)) {
                        Ok(value) => break Ok(value),
                        Err(_) => break Err(SendError),
                    }
                }
            }
        })
    }
}

/// A channel that broadcasts values to attached [senders](BroadcastSender).
///
/// This is part of the [`BroadcastResponse`] message behavior to efficiently send delayed responses
/// to a large number of senders. All requests that are attached to this channel via their senders
/// resolve with the same value.
///
/// # Example
///
/// ```
/// use relay_system::{BroadcastChannel, BroadcastSender};
///
/// struct MyService {
///     channel: Option<BroadcastChannel<String>>,
/// }
///
/// impl MyService {
///     fn handle_message(&mut self, sender: BroadcastSender<String>) {
///         if let Some(ref mut channel) = self.channel {
///             channel.attach(sender);
///         } else {
///             self.channel = Some(sender.into_channel());
///         }
///     }
///
///     fn finish_compute(&mut self, value: String) {
///         if let Some(channel) = self.channel.take() {
///             channel.send(value);
///         }
///     }
/// }
/// ```
#[derive(Debug)]
pub struct BroadcastChannel<T>
where
    T: Clone,
{
    tx: oneshot::Sender<T>,
    rx: Shared<oneshot::Receiver<T>>,
}

impl<T: Clone> BroadcastChannel<T> {
    /// Creates a standalone channel.
    ///
    /// Use [`attach`](Self::attach) to add senders to this channel. Alternatively, create a channel
    /// with [`BroadcastSender::into_channel`].
    pub fn new() -> Self {
        let (tx, rx) = oneshot::channel();
        Self {
            tx,
            rx: rx.shared(),
        }
    }

    /// Attaches a sender of another message to this channel to receive the same value.
    ///
    /// # Example
    ///
    /// ```
    /// use relay_system::{BroadcastChannel, BroadcastResponse, BroadcastSender};
    /// # use relay_system::MessageResponse;
    ///
    /// // This is usually done as part of `Addr::send`
    /// let (sender, rx) = BroadcastResponse::<&str>::channel();
    ///
    /// let mut channel = BroadcastChannel::new();
    /// channel.attach(sender);
    /// ```
    pub fn attach(&mut self, sender: BroadcastSender<T>) {
        sender.0.send(InitialResponse::Poll(self.rx.clone())).ok();
    }

    /// Sends a value to all attached senders and closes the channel.
    ///
    /// This method succeeds even if no senders are attached to this channel anymore. To check if
    /// this channel is still active with senders attached, use [`is_attached`](Self::is_attached).
    ///
    /// # Example
    ///
    /// ```
    /// use relay_system::BroadcastResponse;
    /// # use relay_system::MessageResponse;
    /// # tokio::runtime::Builder::new_current_thread().build().unwrap().block_on(async {
    ///
    /// // This is usually done as part of `Addr::send`
    /// let (sender, rx) = BroadcastResponse::<&str>::channel();
    ///
    /// let channel = sender.into_channel();
    /// channel.send("test");
    /// assert_eq!(rx.await, Ok("test"));
    /// # })
    /// ```
    pub fn send(self, value: T) {
        self.tx.send(value).ok();
    }

    /// Returns `true` if there are [requests](BroadcastRequest) waiting for this channel.
    ///
    /// The channel is not permanently closed when all waiting requests have detached. A new sender
    /// can be attached using [`attach`](Self::attach) even after this method returns `false`.
    ///
    /// # Example
    ///
    /// ```
    /// use relay_system::BroadcastResponse;
    /// # use relay_system::MessageResponse;
    ///
    /// // This is usually done as part of `Addr::send`
    /// let (sender, rx) = BroadcastResponse::<&str>::channel();
    ///
    /// let channel = sender.into_channel();
    /// assert!(channel.is_attached());
    ///
    /// drop(rx);
    /// assert!(!channel.is_attached());
    /// ```
    pub fn is_attached(&self) -> bool {
        self.rx.strong_count() > Some(1)
    }
}

impl<T: Clone> Default for BroadcastChannel<T> {
    fn default() -> Self {
        Self::new()
    }
}

/// Sends a message response from a service back to the waiting [`BroadcastRequest`].
///
/// The sender is part of an [`BroadcastResponse`] and should be moved into the service interface
/// type. If this sender is dropped without calling [`send`](Self::send), the request fails with
/// [`SendError`].
///
/// As opposed to the regular [`Sender`] for asynchronous messages, this sender can be converted
/// into a [channel](Self::into_channel) that efficiently shares a common response for multiple
/// requests to the same data value. This is useful if resolving or computing the value takes more
/// time.
///
/// # Example
///
/// ```
/// use relay_system::BroadcastResponse;
/// # use relay_system::MessageResponse;
/// # tokio::runtime::Builder::new_current_thread().build().unwrap().block_on(async {
///
/// // This is usually done as part of `Addr::send`
/// let (sender1, rx1) = BroadcastResponse::<&str>::channel();
/// let (sender2, rx2) = BroadcastResponse::<&str>::channel();
///
/// // On the first time, convert the sender into a channel
/// let mut channel = sender1.into_channel();
///
/// // The second time, attach the sender to the existing channel
/// channel.attach(sender2);
///
/// // Send a value into the channel to resolve all requests simultaneously
/// channel.send("test");
/// assert_eq!(rx1.await, Ok("test"));
/// assert_eq!(rx2.await, Ok("test"));
/// # })
/// ```
#[derive(Debug)]
pub struct BroadcastSender<T>(oneshot::Sender<InitialResponse<T>>)
where
    T: Clone;

impl<T: Clone> BroadcastSender<T> {
    /// Immediately resolve a ready value.
    ///
    /// This bypasses shared channels and directly sends the a value to the waiting
    /// [request](BroadcastRequest). In terms of performance and behavior, using `send` is
    /// equivalent to calling [`Sender::send`] for a regular [`AsyncResponse`].
    ///
    /// # Example
    ///
    /// ```
    /// use relay_system::BroadcastResponse;
    /// # use relay_system::MessageResponse;
    /// # tokio::runtime::Builder::new_current_thread().build().unwrap().block_on(async {
    ///
    /// // This is usually done as part of `Addr::send`
    /// let (sender, rx) = BroadcastResponse::<&str>::channel();
    ///
    /// // sender is NOT converted into a channel!
    ///
    /// sender.send("test");
    /// assert_eq!(rx.await, Ok("test"));
    /// # })
    /// ```
    pub fn send(self, value: T) {
        self.0.send(InitialResponse::Ready(value)).ok();
    }

    /// Creates a channel from this sender that can be shared with other senders.
    ///
    /// To add more senders to the created channel at a later point, use
    /// [`attach`](BroadcastChannel::attach).
    ///
    /// # Example
    ///
    /// ```
    /// use relay_system::{BroadcastChannel, BroadcastResponse};
    /// # use relay_system::MessageResponse;
    ///
    /// // This is usually done as part of `Addr::send`
    /// let (sender, rx) = BroadcastResponse::<&str>::channel();
    ///
    /// let channel: BroadcastChannel<&str> = sender.into_channel();
    /// ```
    pub fn into_channel(self) -> BroadcastChannel<T> {
        let mut channel = BroadcastChannel::new();
        channel.attach(self);
        channel
    }
}

/// Variation of [`AsyncResponse`] that efficiently broadcasts responses to many requests.
///
/// This response behavior is useful for services that cache or debounce requests. Instead of
/// responding to each equivalent request via its individual sender, the broadcast behavior allows
/// to create a [`BroadcastChannel`] that efficiently resolves all pending requests once the value
/// is ready.
///
/// Similar to `AsyncResponse`, the service receives a sender that it can use to send a value
/// directly back to the waiting request. Additionally, the sender can be converted into a channel
/// or attached to an already existing channel, if the service expects more requests while computing
/// the response.
///
/// See [`FromMessage`] and [`Service`] for implementation advice and examples.
pub struct BroadcastResponse<T>(PhantomData<T>)
where
    T: Clone;

impl<T: Clone> fmt::Debug for BroadcastResponse<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("BroadcastResponse")
    }
}

impl<T: Clone> MessageResponse for BroadcastResponse<T> {
    type Sender = BroadcastSender<T>;
    type Output = BroadcastRequest<T>;

    fn channel() -> (Self::Sender, Self::Output) {
        let (tx, rx) = oneshot::channel();
        (
            BroadcastSender(tx),
            BroadcastRequest(BroadcastState::Pending(rx)),
        )
    }
}

/// Declares a message as part of an [`Interface`].
///
/// Messages have an associated `Response` type that determines the return value of sending the
/// message. Within an interface, the responder can vary for each message. There are two provided
/// responders.
///
/// # No Response
///
/// [`NoResponse`] is used for fire-and-forget messages that do not return any values. These
/// messages do not spawn futures and cannot be awaited. It is neither possible to verify whether
/// the message was delivered to the service.
///
/// When implementing `FromMessage` for such messages, the second argument can be ignored by
/// convention:
///
/// ```
/// use relay_system::{FromMessage, Interface, NoResponse};
///
/// struct MyMessage;
///
/// enum MyInterface {
///     MyMessage(MyMessage),
///     // ...
/// }
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<MyMessage> for MyInterface {
///     type Response = NoResponse;
///
///     fn from_message(message: MyMessage, _: ()) -> Self {
///         Self::MyMessage(message)
///     }
/// }
/// ```
///
/// # Asynchronous Responses
///
/// [`AsyncResponse`] is used for messages that resolve to some future value. This value is sent
/// back by the service through a [`Sender`], which must be added into the interface:
///
/// ```
/// use relay_system::{AsyncResponse, FromMessage, Interface, Sender};
///
/// struct MyMessage;
///
/// enum MyInterface {
///     MyMessage(MyMessage, Sender<bool>),
///     // ...
/// }
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<MyMessage> for MyInterface {
///     type Response = AsyncResponse<bool>;
///
///     fn from_message(message: MyMessage, sender: Sender<bool>) -> Self {
///         Self::MyMessage(message, sender)
///     }
/// }
/// ```
///
/// # Broadcast Responses
///
/// [`BroadcastResponse`] is similar to the previous asynchronous response, but it additionally
/// allows to efficiently handle duplicate requests for services that debounce equivalent requests
/// or cache results. On the requesting side, this behavior is identical to the asynchronous
/// behavior, but it provides more utilities to the implementing service.
///
/// ```
/// use relay_system::{BroadcastResponse, BroadcastSender, FromMessage, Interface};
///
/// struct MyMessage;
///
/// enum MyInterface {
///     MyMessage(MyMessage, BroadcastSender<bool>),
///     // ...
/// }
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<MyMessage> for MyInterface {
///     type Response = BroadcastResponse<bool>;
///
///     fn from_message(message: MyMessage, sender: BroadcastSender<bool>) -> Self {
///         Self::MyMessage(message, sender)
///     }
/// }
/// ```
///
/// See [`Interface`] for more examples on how to build interfaces using this trait and [`Service`]
/// documentation for patterns and advice to handle messages.
pub trait FromMessage<M>: Interface {
    /// The behavior declaring the return value when sending this message.
    type Response: MessageResponse;

    /// Converts the message into the service interface.
    fn from_message(message: M, sender: <Self::Response as MessageResponse>::Sender) -> Self;
}

/// Abstraction over address types for service channels.
trait SendDispatch<M>: Send + Sync {
    /// The behavior declaring the return value when sending this message.
    ///
    /// When this is implemented for a type bound to an [`Interface`], this is the same behavior as
    /// used in [`FromMessage::Response`].
    type Response: MessageResponse;

    /// Sends a message to the service and returns the response.
    ///
    /// See [`Addr::send`] for more information on a concrete type.
    fn send(&self, message: M) -> <Self::Response as MessageResponse>::Output;

    /// Returns a trait object of this type.
    fn to_trait_object(&self) -> Box<dyn SendDispatch<M, Response = Self::Response>>;
}

/// An address to a [`Service`] implementing any interface that takes a given message.
///
/// This is similar to an [`Addr`], but it is bound to a single message rather than an interface. As
/// such, this type is not meant for communicating with a service implementation, but rather as a
/// handle to any service that can consume a given message. These can be back-channels or hooks that
/// are configured externally through Inversion of Control (IoC).
///
/// Recipients are created through [`Addr::recipient`].
pub struct Recipient<M, R> {
    inner: Box<dyn SendDispatch<M, Response = R>>,
}

impl<M, R> Recipient<M, R>
where
    R: MessageResponse,
{
    /// Sends a message to the service and returns the response.
    ///
    /// This is equivalent to [`send`](Addr::send) on the originating address.
    pub fn send(&self, message: M) -> R::Output {
        self.inner.send(message)
    }
}

// Manual implementation since `XSender` cannot require `Clone` for object safety.
impl<M, R: MessageResponse> Clone for Recipient<M, R> {
    fn clone(&self) -> Self {
        Self {
            inner: self.inner.to_trait_object(),
        }
    }
}

/// The address of a [`Service`].
///
/// Addresses allow to [send](Self::send) messages to a service that implements a corresponding
/// [`Interface`] as long as the service is running.
///
/// Addresses can be freely cloned. When the last clone is dropped, the message channel of the
/// service closes permanently, which signals to the service that it can shut down.
pub struct Addr<I: Interface> {
    tx: mpsc::UnboundedSender<I>,
    queue_size: Arc<AtomicU64>,
}

impl<I: Interface> Addr<I> {
    /// Sends a message to the service and returns the response.
    ///
    /// Depending on the message's response behavior, this either returns a future resolving to the
    /// return value, or does not return anything for fire-and-forget messages. The communication
    /// channel with the service is unbounded, so backlogs could occur when sending too many
    /// messages.
    ///
    /// Sending asynchronous messages can fail with `Err(SendError)` if the service has shut down.
    /// The result of asynchronous messages does not have to be awaited. The message will be
    /// delivered and handled regardless:
    pub fn send<M>(&self, message: M) -> <I::Response as MessageResponse>::Output
    where
        I: FromMessage<M>,
    {
        let (tx, rx) = I::Response::channel();
        self.queue_size.fetch_add(1, Ordering::SeqCst);
        self.tx.send(I::from_message(message, tx)).ok(); // it's ok to drop, the response will fail
        rx
    }

    /// Returns a handle that can receive a given message independent of the interface.
    ///
    /// See [`Recipient`] for more information and examples.
    pub fn recipient<M>(self) -> Recipient<M, I::Response>
    where
        I: FromMessage<M>,
    {
        Recipient {
            inner: Box::new(self),
        }
    }

    /// Returns wether the queue is currently empty.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the current queue size.
    pub fn len(&self) -> u64 {
        self.queue_size.load(Ordering::Relaxed)
    }

    /// Custom address used for testing.
    ///
    /// Returns the receiving end of the channel for inspection.
    pub fn custom() -> (Self, mpsc::UnboundedReceiver<I>) {
        let (tx, rx) = mpsc::unbounded_channel();
        (
            Addr {
                tx,
                queue_size: Default::default(),
            },
            rx,
        )
    }

    /// Dummy address used for testing.
    pub fn dummy() -> Self {
        Self::custom().0
    }
}

impl<I: Interface> fmt::Debug for Addr<I> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Addr")
            .field("open", &!self.tx.is_closed())
            .field("queue_size", &self.queue_size.load(Ordering::Relaxed))
            .finish()
    }
}

// Manually derive `Clone` since we do not require `I: Clone` and the Clone derive adds this
// constraint.
impl<I: Interface> Clone for Addr<I> {
    fn clone(&self) -> Self {
        Self {
            tx: self.tx.clone(),
            queue_size: self.queue_size.clone(),
        }
    }
}

impl<I, M> SendDispatch<M> for Addr<I>
where
    I: Interface + FromMessage<M>,
{
    type Response = <I as FromMessage<M>>::Response;

    fn send(&self, message: M) -> <Self::Response as MessageResponse>::Output {
        Addr::send(self, message)
    }

    fn to_trait_object(&self) -> Box<dyn SendDispatch<M, Response = Self::Response>> {
        Box::new(self.clone())
    }
}

/// Inbound channel for messages sent through an [`Addr`].
///
/// This channel is meant to be polled in a [`Service`].
///
/// Instances are created automatically when [spawning](ServiceRunner::start) a service, or can be
/// created through [`channel`]. The channel closes when all associated [`Addr`]s are dropped.
pub struct Receiver<I: Interface> {
    rx: mpsc::UnboundedReceiver<I>,
    name: &'static str,
    interval: tokio::time::Interval,
    queue_size: Arc<AtomicU64>,
}

impl<I: Interface> Receiver<I> {
    /// Receives the next value for this receiver.
    ///
    /// This method returns `None` if the channel has been closed and there are
    /// no remaining messages in the channel's buffer. This indicates that no
    /// further values can ever be received from this `Receiver`. The channel is
    /// closed when all senders have been dropped.
    ///
    /// If there are no messages in the channel's buffer, but the channel has
    /// not yet been closed, this method will sleep until a message is sent or
    /// the channel is closed.
    pub async fn recv(&mut self) -> Option<I> {
        loop {
            tokio::select! {
                biased;

                _ = self.interval.tick() => {
                    let backlog = self.queue_size.load(Ordering::Relaxed);
                    relay_statsd::metric!(
                        gauge(SystemGauges::ServiceBackPressure) = backlog,
                        service = self.name
                    );
                },
                message = self.rx.recv() => {
                    self.queue_size.fetch_sub(1, Ordering::SeqCst);
                    return message;
                },
            }
        }
    }
}

impl<I: Interface> fmt::Debug for Receiver<I> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Receiver")
            .field("name", &self.name)
            .field("queue_size", &self.queue_size.load(Ordering::Relaxed))
            .finish()
    }
}

/// Creates an unbounded channel for communicating with a [`Service`].
///
/// The `Addr` as the sending part provides public access to the service, while the `Receiver`
/// should remain internal to the service.
pub fn channel<I: Interface>(name: &'static str) -> (Addr<I>, Receiver<I>) {
    let queue_size = Arc::new(AtomicU64::new(0));
    let (tx, rx) = mpsc::unbounded_channel();

    let addr = Addr {
        tx,
        queue_size: queue_size.clone(),
    };

    let mut interval = tokio::time::interval(BACKLOG_INTERVAL);
    interval.set_missed_tick_behavior(MissedTickBehavior::Skip);

    let receiver = Receiver {
        rx,
        name,
        interval,
        queue_size,
    };

    (addr, receiver)
}

/// An asynchronous unit responding to messages.
///
/// Services receive messages conforming to some [`Interface`] through an [`Addr`] and handle them
/// one by one. Internally, services are free to concurrently process these messages or not, most
/// probably should.
///
/// Individual messages can have a response which will be sent once the message is handled by the
/// service. The sender can asynchronously await the responses of such messages.
///
/// To start a service, create a service runner and call [`ServiceRunner::start`].
///
/// # Implementing Services
///
/// The standard way to implement services is through the `run` function. It receives an inbound
/// channel for all messages sent through the service's address. Note that this function is
/// synchronous, so that this needs to spawn at least one task internally:
///
/// ```no_run
/// use relay_system::{FromMessage, Interface, NoResponse, Receiver, Service, ServiceRunner};
///
/// struct MyMessage;
///
/// impl Interface for MyMessage {}
///
/// impl FromMessage<Self> for MyMessage {
///     type Response = NoResponse;
///
///     fn from_message(message: Self, _: ()) -> Self {
///         message
///     }
/// }
///
/// struct MyService;
///
/// impl Service for MyService {
///     type Interface = MyMessage;
///
///     async fn run(self, mut rx: Receiver<Self::Interface>) {
///         while let Some(message) = rx.recv().await {
///             // handle the message
///         }
///     }
/// }
///
/// let addr = ServiceRunner::new().start(MyService);
/// ```
///
/// ## Debounce and Caching
///
/// Services that cache or debounce their responses can benefit from the [`BroadcastResponse`]
/// behavior. To use this behavior, implement the message and interface identical to
/// [`AsyncResponse`] above. This will provide a different sender type that can be converted into a
/// channel to debounce responses. It is still possible to send values directly via the sender
/// without a broadcast channel.
///
/// ```
/// use std::collections::btree_map::{BTreeMap, Entry};
/// use relay_system::{BroadcastChannel, BroadcastSender};
///
/// // FromMessage implementation using BroadcastResponse omitted for brevity.
///
/// struct MyService {
///     cache: BTreeMap<u32, String>,
///     channels: BTreeMap<u32, BroadcastChannel<String>>,
/// }
///
/// impl MyService {
///     fn handle_message(&mut self, id: u32, sender: BroadcastSender<String>) {
///         if let Some(cached) = self.cache.get(&id) {
///             sender.send(cached.clone());
///             return;
///         }
///
///         match self.channels.entry(id) {
///             Entry::Vacant(entry) => {
///                 entry.insert(sender.into_channel());
///                 // Start async computation here.
///             }
///             Entry::Occupied(mut entry) => {
///                 entry.get_mut().attach(sender);
///             }
///         }
///     }
///
///     fn finish_compute(&mut self, id: u32, value: String) {
///         if let Some(channel) = self.channels.remove(&id) {
///             channel.send(value.clone());
///         }
///
///         self.cache.insert(id, value);
///     }
/// }
/// ```
///
pub trait Service: Sized {
    /// The interface of messages this service implements.
    ///
    /// The interface can be a single message type or an enumeration of all the messages that
    /// can be handled by this service.
    type Interface: Interface;

    /// Defines the main task of this service.
    ///
    /// `run` typically contains a loop that reads from `rx`, or a `select!` that reads
    /// from multiple sources at once.
    fn run(self, rx: Receiver<Self::Interface>) -> impl Future<Output = ()> + Send + 'static;

    /// Starts the service in the current runtime and returns an address for it.
    ///
    /// The service runs in a detached tokio task that cannot be joined on. This is mainly useful
    /// for tests.
    fn start_detached(self) -> Addr<Self::Interface> {
        let (addr, rx) = channel(Self::name());
        spawn(TaskId::for_service::<Self>(), self.run(rx));
        addr
    }

    /// Returns a unique name for this service implementation.
    ///
    /// This is used for internal diagnostics and uses the fully qualified type name of the service
    /// implementor by default.
    fn name() -> &'static str {
        std::any::type_name::<Self>()
    }
}

/// Keeps track of running services.
///
/// Exposes information about crashed services.
#[derive(Debug, Default)]
pub struct ServiceRunner(FuturesUnordered<JoinHandle<()>>);

impl ServiceRunner {
    /// Creates a new service runner.
    pub fn new() -> Self {
        Self(FuturesUnordered::new())
    }

    /// Starts a service and starts tracking its join handle, exposing an [Addr] for message passing.
    pub fn start<S: Service>(&mut self, service: S) -> Addr<S::Interface> {
        let (addr, rx) = channel(S::name());
        self.start_with(service, rx);
        addr
    }

    /// Starts a service and starts tracking its join handle, given a predefined receiver.
    pub fn start_with<S: Service>(&mut self, service: S, rx: Receiver<S::Interface>) {
        self.0
            .push(spawn(TaskId::for_service::<S>(), service.run(rx)));
    }

    /// Awaits until all services have finished.
    ///
    /// Panics if one of the spawned services has panicked.
    pub async fn join(&mut self) {
        while let Some(res) = self.0.next().await {
            if let Err(e) = res {
                if e.is_panic() {
                    // Re-trigger panic to terminate the process:
                    std::panic::resume_unwind(e.into_panic());
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    struct MockMessage;

    impl Interface for MockMessage {}

    impl FromMessage<Self> for MockMessage {
        type Response = NoResponse;

        fn from_message(message: Self, _: ()) -> Self {
            message
        }
    }

    struct MockService;

    impl Service for MockService {
        type Interface = MockMessage;

        async fn run(self, mut rx: Receiver<Self::Interface>) {
            while rx.recv().await.is_some() {
                tokio::time::sleep(BACKLOG_INTERVAL * 2).await;
            }
        }

        fn name() -> &'static str {
            "mock"
        }
    }

    #[test]
    fn test_backpressure_metrics() {
        let rt = tokio::runtime::Builder::new_current_thread()
            .enable_time()
            .build()
            .unwrap();

        let _guard = rt.enter();
        tokio::time::pause();

        // Mock service takes 2 * BACKLOG_INTERVAL for every message
        let addr = MockService.start_detached();

        // Advance the timer by a tiny offset to trigger the first metric emission.
        let captures = relay_statsd::with_capturing_test_client(|| {
            rt.block_on(async {
                tokio::time::sleep(Duration::from_millis(10)).await;
            })
        });

        assert_eq!(captures, ["service.back_pressure:0|g|#service:mock"]);

        // Send messages and advance to 0.5 * INTERVAL. No metrics expected at this point.
        let captures = relay_statsd::with_capturing_test_client(|| {
            rt.block_on(async {
                addr.send(MockMessage); // will be pulled immediately
                addr.send(MockMessage);
                addr.send(MockMessage);

                tokio::time::sleep(BACKLOG_INTERVAL / 2).await;
            })
        });

        assert!(captures.is_empty());

        // Advance to 6.5 * INTERVAL. The service should pull the first message immediately, another
        // message every 2 INTERVALS. The messages are fully handled after 6 INTERVALS, but we
        // cannot observe that since the last message exits the queue at 4.
        let captures = relay_statsd::with_capturing_test_client(|| {
            rt.block_on(async {
                tokio::time::sleep(BACKLOG_INTERVAL * 6).await;
            })
        });

        assert_eq!(
            captures,
            [
                "service.back_pressure:2|g|#service:mock", // 2 * INTERVAL
                "service.back_pressure:1|g|#service:mock", // 4 * INTERVAL
                "service.back_pressure:0|g|#service:mock", // 6 * INTERVAL
            ]
        );
    }
}