relay_system/service.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
use std::fmt;
use std::future::Future;
use std::marker::PhantomData;
use std::pin::Pin;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::Arc;
use std::task::{Context, Poll};
use std::time::Duration;
use futures::future::Shared;
use futures::stream::FuturesUnordered;
use futures::{FutureExt, StreamExt};
use tokio::sync::{mpsc, oneshot};
use tokio::task::JoinHandle;
use tokio::time::MissedTickBehavior;
use crate::statsd::SystemGauges;
use crate::{spawn, TaskId};
/// Interval for recording backlog metrics on service channels.
const BACKLOG_INTERVAL: Duration = Duration::from_secs(1);
/// A message interface for [services](Service).
///
/// Most commonly, this interface is an enumeration of messages, but it can also be implemented on a
/// single message. For each individual message, this type needs to implement the [`FromMessage`]
/// trait.
///
/// # Implementating Interfaces
///
/// There are three main ways to implement interfaces, which depends on the number of messages and
/// their return values. The simplest way is an interface consisting of a **single message** with
/// **no return value**. For this case, use the message directly as interface and choose
/// `NoResponse` as response:
///
/// ```
/// use relay_system::{FromMessage, Interface, NoResponse};
///
/// #[derive(Debug)]
/// pub struct MyMessage;
///
/// impl Interface for MyMessage {}
///
/// impl FromMessage<Self> for MyMessage {
/// type Response = NoResponse;
///
/// fn from_message(message: Self, _: ()) -> Self {
/// message
/// }
/// }
/// ```
///
/// If there is a **single message with a return value**, implement the interface as a wrapper for
/// the message and the return [`Sender`]:
///
/// ```
/// use relay_system::{AsyncResponse, FromMessage, Interface, Sender};
///
/// #[derive(Debug)]
/// pub struct MyMessage;
///
/// #[derive(Debug)]
/// pub struct MyInterface(MyMessage, Sender<bool>);
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<MyMessage> for MyInterface {
/// type Response = AsyncResponse<bool>;
///
/// fn from_message(message: MyMessage, sender: Sender<bool>) -> Self {
/// Self(message, sender)
/// }
/// }
/// ```
///
/// Finally, interfaces with **multiple messages** of any kind can most commonly be implemented
/// through an enumeration for every message. The variants of messages with return values need a
/// `Sender` again:
///
/// ```
/// use relay_system::{AsyncResponse, FromMessage, Interface, NoResponse, Sender};
///
/// #[derive(Debug)]
/// pub struct GetFlag;
///
/// #[derive(Debug)]
/// pub struct SetFlag(pub bool);
///
/// #[derive(Debug)]
/// pub enum MyInterface {
/// Get(GetFlag, Sender<bool>),
/// Set(SetFlag),
/// }
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<GetFlag> for MyInterface {
/// type Response = AsyncResponse<bool>;
///
/// fn from_message(message: GetFlag, sender: Sender<bool>) -> Self {
/// Self::Get(message, sender)
/// }
/// }
///
/// impl FromMessage<SetFlag> for MyInterface {
/// type Response = NoResponse;
///
/// fn from_message(message: SetFlag, _: ()) -> Self {
/// Self::Set(message)
/// }
/// }
/// ```
///
/// # Requirements
///
/// Interfaces are meant to be sent to services via channels. As such, they need to be both `Send`
/// and `'static`. It is highly encouraged to implement `Debug` on all interfaces and their
/// messages.
pub trait Interface: Send + 'static {}
/// Services without messages can use `()` as their interface.
impl Interface for () {}
/// An error when [sending](Addr::send) a message to a service fails.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct SendError;
impl fmt::Display for SendError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "failed to send message to service")
}
}
impl std::error::Error for SendError {}
/// Response behavior of an [`Interface`] message.
///
/// It defines how a service handles and responds to interface messages, such as through
/// asynchronous responses or fire-and-forget without responding. [`FromMessage`] implementations
/// declare this behavior on the interface.
///
/// See [`FromMessage`] for more information on how to use this trait.
pub trait MessageResponse {
/// Sends responses from the service back to the waiting recipient.
type Sender;
/// The type returned from [`Addr::send`].
///
/// This type can be either synchronous and asynchronous based on the responder.
type Output;
/// Returns the response channel for an interface message.
fn channel() -> (Self::Sender, Self::Output);
}
/// The request when sending an asynchronous message to a service.
///
/// This is returned from [`Addr::send`] when the message responds asynchronously through
/// [`AsyncResponse`]. It is a future that should be awaited. The message still runs to
/// completion if this future is dropped.
pub struct Request<T>(oneshot::Receiver<T>);
impl<T> fmt::Debug for Request<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Request").finish_non_exhaustive()
}
}
impl<T> Future for Request<T> {
type Output = Result<T, SendError>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> std::task::Poll<Self::Output> {
Pin::new(&mut self.0)
.poll(cx)
.map(|r| r.map_err(|_| SendError))
}
}
/// Sends a message response from a service back to the waiting [`Request`].
///
/// The sender is part of an [`AsyncResponse`] and should be moved into the service interface
/// type. If this sender is dropped without calling [`send`](Self::send), the request fails with
/// [`SendError`].
pub struct Sender<T>(oneshot::Sender<T>);
impl<T> fmt::Debug for Sender<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Sender")
.field("open", &!self.0.is_closed())
.finish()
}
}
impl<T> Sender<T> {
/// Sends the response value and closes the [`Request`].
///
/// This silenly drops the value if the request has been dropped.
pub fn send(self, value: T) {
self.0.send(value).ok();
}
}
/// Message response resulting in an asynchronous [`Request`].
///
/// The sender must be placed on the interface in [`FromMessage::from_message`].
///
/// See [`FromMessage`] and [`Service`] for implementation advice and examples.
pub struct AsyncResponse<T>(PhantomData<T>);
impl<T> fmt::Debug for AsyncResponse<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("AsyncResponse")
}
}
impl<T> MessageResponse for AsyncResponse<T> {
type Sender = Sender<T>;
type Output = Request<T>;
fn channel() -> (Self::Sender, Self::Output) {
let (tx, rx) = oneshot::channel();
(Sender(tx), Request(rx))
}
}
/// Message response for fire-and-forget messages with no output.
///
/// There is no sender associated to this response. When implementing [`FromMessage`], the sender
/// can be ignored.
///
/// See [`FromMessage`] and [`Service`] for implementation advice and examples.
pub struct NoResponse;
impl fmt::Debug for NoResponse {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("NoResponse")
}
}
impl MessageResponse for NoResponse {
type Sender = ();
type Output = ();
fn channel() -> (Self::Sender, Self::Output) {
((), ())
}
}
/// Initial response to a [`BroadcastRequest`].
#[derive(Debug)]
enum InitialResponse<T> {
/// The response value is immediately ready.
///
/// The sender did not attach to a broadcast channel and instead resolved the requested value
/// immediately. The request is now ready and can resolve. See [`BroadcastChannel::attach`].
Ready(T),
/// The sender is attached to a channel that needs to be polled.
Poll(Shared<oneshot::Receiver<T>>),
}
/// States of a [`BroadcastRequest`].
enum BroadcastState<T> {
/// The request is waiting for an initial response.
Pending(oneshot::Receiver<InitialResponse<T>>),
/// The request is attached to a [`BroadcastChannel`].
Attached(Shared<oneshot::Receiver<T>>),
}
/// The request when sending an asynchronous message to a service.
///
/// This is returned from [`Addr::send`] when the message responds asynchronously through
/// [`BroadcastResponse`]. It is a future that should be awaited. The message still runs to
/// completion if this future is dropped.
///
/// # Panics
///
/// This future is not fused and panics if it is polled again after it has resolved.
pub struct BroadcastRequest<T>(BroadcastState<T>)
where
T: Clone;
impl<T: Clone> Future for BroadcastRequest<T> {
type Output = Result<T, SendError>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
Poll::Ready(loop {
match self.0 {
BroadcastState::Pending(ref mut pending) => {
match futures::ready!(Pin::new(pending).poll(cx)) {
Ok(InitialResponse::Ready(value)) => break Ok(value),
Ok(InitialResponse::Poll(shared)) => {
self.0 = BroadcastState::Attached(shared)
}
Err(_) => break Err(SendError),
}
}
BroadcastState::Attached(ref mut shared) => {
match futures::ready!(Pin::new(shared).poll(cx)) {
Ok(value) => break Ok(value),
Err(_) => break Err(SendError),
}
}
}
})
}
}
/// A channel that broadcasts values to attached [senders](BroadcastSender).
///
/// This is part of the [`BroadcastResponse`] message behavior to efficiently send delayed responses
/// to a large number of senders. All requests that are attached to this channel via their senders
/// resolve with the same value.
///
/// # Example
///
/// ```
/// use relay_system::{BroadcastChannel, BroadcastSender};
///
/// struct MyService {
/// channel: Option<BroadcastChannel<String>>,
/// }
///
/// impl MyService {
/// fn handle_message(&mut self, sender: BroadcastSender<String>) {
/// if let Some(ref mut channel) = self.channel {
/// channel.attach(sender);
/// } else {
/// self.channel = Some(sender.into_channel());
/// }
/// }
///
/// fn finish_compute(&mut self, value: String) {
/// if let Some(channel) = self.channel.take() {
/// channel.send(value);
/// }
/// }
/// }
/// ```
#[derive(Debug)]
pub struct BroadcastChannel<T>
where
T: Clone,
{
tx: oneshot::Sender<T>,
rx: Shared<oneshot::Receiver<T>>,
}
impl<T: Clone> BroadcastChannel<T> {
/// Creates a standalone channel.
///
/// Use [`attach`](Self::attach) to add senders to this channel. Alternatively, create a channel
/// with [`BroadcastSender::into_channel`].
pub fn new() -> Self {
let (tx, rx) = oneshot::channel();
Self {
tx,
rx: rx.shared(),
}
}
/// Attaches a sender of another message to this channel to receive the same value.
///
/// # Example
///
/// ```
/// use relay_system::{BroadcastChannel, BroadcastResponse, BroadcastSender};
/// # use relay_system::MessageResponse;
///
/// // This is usually done as part of `Addr::send`
/// let (sender, rx) = BroadcastResponse::<&str>::channel();
///
/// let mut channel = BroadcastChannel::new();
/// channel.attach(sender);
/// ```
pub fn attach(&mut self, sender: BroadcastSender<T>) {
sender.0.send(InitialResponse::Poll(self.rx.clone())).ok();
}
/// Sends a value to all attached senders and closes the channel.
///
/// This method succeeds even if no senders are attached to this channel anymore. To check if
/// this channel is still active with senders attached, use [`is_attached`](Self::is_attached).
///
/// # Example
///
/// ```
/// use relay_system::BroadcastResponse;
/// # use relay_system::MessageResponse;
/// # tokio::runtime::Builder::new_current_thread().build().unwrap().block_on(async {
///
/// // This is usually done as part of `Addr::send`
/// let (sender, rx) = BroadcastResponse::<&str>::channel();
///
/// let channel = sender.into_channel();
/// channel.send("test");
/// assert_eq!(rx.await, Ok("test"));
/// # })
/// ```
pub fn send(self, value: T) {
self.tx.send(value).ok();
}
/// Returns `true` if there are [requests](BroadcastRequest) waiting for this channel.
///
/// The channel is not permanently closed when all waiting requests have detached. A new sender
/// can be attached using [`attach`](Self::attach) even after this method returns `false`.
///
/// # Example
///
/// ```
/// use relay_system::BroadcastResponse;
/// # use relay_system::MessageResponse;
///
/// // This is usually done as part of `Addr::send`
/// let (sender, rx) = BroadcastResponse::<&str>::channel();
///
/// let channel = sender.into_channel();
/// assert!(channel.is_attached());
///
/// drop(rx);
/// assert!(!channel.is_attached());
/// ```
pub fn is_attached(&self) -> bool {
self.rx.strong_count() > Some(1)
}
}
impl<T: Clone> Default for BroadcastChannel<T> {
fn default() -> Self {
Self::new()
}
}
/// Sends a message response from a service back to the waiting [`BroadcastRequest`].
///
/// The sender is part of an [`BroadcastResponse`] and should be moved into the service interface
/// type. If this sender is dropped without calling [`send`](Self::send), the request fails with
/// [`SendError`].
///
/// As opposed to the regular [`Sender`] for asynchronous messages, this sender can be converted
/// into a [channel](Self::into_channel) that efficiently shares a common response for multiple
/// requests to the same data value. This is useful if resolving or computing the value takes more
/// time.
///
/// # Example
///
/// ```
/// use relay_system::BroadcastResponse;
/// # use relay_system::MessageResponse;
/// # tokio::runtime::Builder::new_current_thread().build().unwrap().block_on(async {
///
/// // This is usually done as part of `Addr::send`
/// let (sender1, rx1) = BroadcastResponse::<&str>::channel();
/// let (sender2, rx2) = BroadcastResponse::<&str>::channel();
///
/// // On the first time, convert the sender into a channel
/// let mut channel = sender1.into_channel();
///
/// // The second time, attach the sender to the existing channel
/// channel.attach(sender2);
///
/// // Send a value into the channel to resolve all requests simultaneously
/// channel.send("test");
/// assert_eq!(rx1.await, Ok("test"));
/// assert_eq!(rx2.await, Ok("test"));
/// # })
/// ```
#[derive(Debug)]
pub struct BroadcastSender<T>(oneshot::Sender<InitialResponse<T>>)
where
T: Clone;
impl<T: Clone> BroadcastSender<T> {
/// Immediately resolve a ready value.
///
/// This bypasses shared channels and directly sends the a value to the waiting
/// [request](BroadcastRequest). In terms of performance and behavior, using `send` is
/// equivalent to calling [`Sender::send`] for a regular [`AsyncResponse`].
///
/// # Example
///
/// ```
/// use relay_system::BroadcastResponse;
/// # use relay_system::MessageResponse;
/// # tokio::runtime::Builder::new_current_thread().build().unwrap().block_on(async {
///
/// // This is usually done as part of `Addr::send`
/// let (sender, rx) = BroadcastResponse::<&str>::channel();
///
/// // sender is NOT converted into a channel!
///
/// sender.send("test");
/// assert_eq!(rx.await, Ok("test"));
/// # })
/// ```
pub fn send(self, value: T) {
self.0.send(InitialResponse::Ready(value)).ok();
}
/// Creates a channel from this sender that can be shared with other senders.
///
/// To add more senders to the created channel at a later point, use
/// [`attach`](BroadcastChannel::attach).
///
/// # Example
///
/// ```
/// use relay_system::{BroadcastChannel, BroadcastResponse};
/// # use relay_system::MessageResponse;
///
/// // This is usually done as part of `Addr::send`
/// let (sender, rx) = BroadcastResponse::<&str>::channel();
///
/// let channel: BroadcastChannel<&str> = sender.into_channel();
/// ```
pub fn into_channel(self) -> BroadcastChannel<T> {
let mut channel = BroadcastChannel::new();
channel.attach(self);
channel
}
}
/// Variation of [`AsyncResponse`] that efficiently broadcasts responses to many requests.
///
/// This response behavior is useful for services that cache or debounce requests. Instead of
/// responding to each equivalent request via its individual sender, the broadcast behavior allows
/// to create a [`BroadcastChannel`] that efficiently resolves all pending requests once the value
/// is ready.
///
/// Similar to `AsyncResponse`, the service receives a sender that it can use to send a value
/// directly back to the waiting request. Additionally, the sender can be converted into a channel
/// or attached to an already existing channel, if the service expects more requests while computing
/// the response.
///
/// See [`FromMessage`] and [`Service`] for implementation advice and examples.
pub struct BroadcastResponse<T>(PhantomData<T>)
where
T: Clone;
impl<T: Clone> fmt::Debug for BroadcastResponse<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("BroadcastResponse")
}
}
impl<T: Clone> MessageResponse for BroadcastResponse<T> {
type Sender = BroadcastSender<T>;
type Output = BroadcastRequest<T>;
fn channel() -> (Self::Sender, Self::Output) {
let (tx, rx) = oneshot::channel();
(
BroadcastSender(tx),
BroadcastRequest(BroadcastState::Pending(rx)),
)
}
}
/// Declares a message as part of an [`Interface`].
///
/// Messages have an associated `Response` type that determines the return value of sending the
/// message. Within an interface, the responder can vary for each message. There are two provided
/// responders.
///
/// # No Response
///
/// [`NoResponse`] is used for fire-and-forget messages that do not return any values. These
/// messages do not spawn futures and cannot be awaited. It is neither possible to verify whether
/// the message was delivered to the service.
///
/// When implementing `FromMessage` for such messages, the second argument can be ignored by
/// convention:
///
/// ```
/// use relay_system::{FromMessage, Interface, NoResponse};
///
/// struct MyMessage;
///
/// enum MyInterface {
/// MyMessage(MyMessage),
/// // ...
/// }
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<MyMessage> for MyInterface {
/// type Response = NoResponse;
///
/// fn from_message(message: MyMessage, _: ()) -> Self {
/// Self::MyMessage(message)
/// }
/// }
/// ```
///
/// # Asynchronous Responses
///
/// [`AsyncResponse`] is used for messages that resolve to some future value. This value is sent
/// back by the service through a [`Sender`], which must be added into the interface:
///
/// ```
/// use relay_system::{AsyncResponse, FromMessage, Interface, Sender};
///
/// struct MyMessage;
///
/// enum MyInterface {
/// MyMessage(MyMessage, Sender<bool>),
/// // ...
/// }
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<MyMessage> for MyInterface {
/// type Response = AsyncResponse<bool>;
///
/// fn from_message(message: MyMessage, sender: Sender<bool>) -> Self {
/// Self::MyMessage(message, sender)
/// }
/// }
/// ```
///
/// # Broadcast Responses
///
/// [`BroadcastResponse`] is similar to the previous asynchronous response, but it additionally
/// allows to efficiently handle duplicate requests for services that debounce equivalent requests
/// or cache results. On the requesting side, this behavior is identical to the asynchronous
/// behavior, but it provides more utilities to the implementing service.
///
/// ```
/// use relay_system::{BroadcastResponse, BroadcastSender, FromMessage, Interface};
///
/// struct MyMessage;
///
/// enum MyInterface {
/// MyMessage(MyMessage, BroadcastSender<bool>),
/// // ...
/// }
///
/// impl Interface for MyInterface {}
///
/// impl FromMessage<MyMessage> for MyInterface {
/// type Response = BroadcastResponse<bool>;
///
/// fn from_message(message: MyMessage, sender: BroadcastSender<bool>) -> Self {
/// Self::MyMessage(message, sender)
/// }
/// }
/// ```
///
/// See [`Interface`] for more examples on how to build interfaces using this trait and [`Service`]
/// documentation for patterns and advice to handle messages.
pub trait FromMessage<M>: Interface {
/// The behavior declaring the return value when sending this message.
type Response: MessageResponse;
/// Converts the message into the service interface.
fn from_message(message: M, sender: <Self::Response as MessageResponse>::Sender) -> Self;
}
/// Abstraction over address types for service channels.
trait SendDispatch<M>: Send + Sync {
/// The behavior declaring the return value when sending this message.
///
/// When this is implemented for a type bound to an [`Interface`], this is the same behavior as
/// used in [`FromMessage::Response`].
type Response: MessageResponse;
/// Sends a message to the service and returns the response.
///
/// See [`Addr::send`] for more information on a concrete type.
fn send(&self, message: M) -> <Self::Response as MessageResponse>::Output;
/// Returns a trait object of this type.
fn to_trait_object(&self) -> Box<dyn SendDispatch<M, Response = Self::Response>>;
}
/// An address to a [`Service`] implementing any interface that takes a given message.
///
/// This is similar to an [`Addr`], but it is bound to a single message rather than an interface. As
/// such, this type is not meant for communicating with a service implementation, but rather as a
/// handle to any service that can consume a given message. These can be back-channels or hooks that
/// are configured externally through Inversion of Control (IoC).
///
/// Recipients are created through [`Addr::recipient`].
pub struct Recipient<M, R> {
inner: Box<dyn SendDispatch<M, Response = R>>,
}
impl<M, R> Recipient<M, R>
where
R: MessageResponse,
{
/// Sends a message to the service and returns the response.
///
/// This is equivalent to [`send`](Addr::send) on the originating address.
pub fn send(&self, message: M) -> R::Output {
self.inner.send(message)
}
}
// Manual implementation since `XSender` cannot require `Clone` for object safety.
impl<M, R: MessageResponse> Clone for Recipient<M, R> {
fn clone(&self) -> Self {
Self {
inner: self.inner.to_trait_object(),
}
}
}
/// The address of a [`Service`].
///
/// Addresses allow to [send](Self::send) messages to a service that implements a corresponding
/// [`Interface`] as long as the service is running.
///
/// Addresses can be freely cloned. When the last clone is dropped, the message channel of the
/// service closes permanently, which signals to the service that it can shut down.
pub struct Addr<I: Interface> {
tx: mpsc::UnboundedSender<I>,
queue_size: Arc<AtomicU64>,
}
impl<I: Interface> Addr<I> {
/// Sends a message to the service and returns the response.
///
/// Depending on the message's response behavior, this either returns a future resolving to the
/// return value, or does not return anything for fire-and-forget messages. The communication
/// channel with the service is unbounded, so backlogs could occur when sending too many
/// messages.
///
/// Sending asynchronous messages can fail with `Err(SendError)` if the service has shut down.
/// The result of asynchronous messages does not have to be awaited. The message will be
/// delivered and handled regardless:
pub fn send<M>(&self, message: M) -> <I::Response as MessageResponse>::Output
where
I: FromMessage<M>,
{
let (tx, rx) = I::Response::channel();
self.queue_size.fetch_add(1, Ordering::SeqCst);
self.tx.send(I::from_message(message, tx)).ok(); // it's ok to drop, the response will fail
rx
}
/// Returns a handle that can receive a given message independent of the interface.
///
/// See [`Recipient`] for more information and examples.
pub fn recipient<M>(self) -> Recipient<M, I::Response>
where
I: FromMessage<M>,
{
Recipient {
inner: Box::new(self),
}
}
/// Returns wether the queue is currently empty.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the current queue size.
pub fn len(&self) -> u64 {
self.queue_size.load(Ordering::Relaxed)
}
/// Custom address used for testing.
///
/// Returns the receiving end of the channel for inspection.
pub fn custom() -> (Self, mpsc::UnboundedReceiver<I>) {
let (tx, rx) = mpsc::unbounded_channel();
(
Addr {
tx,
queue_size: Default::default(),
},
rx,
)
}
/// Dummy address used for testing.
pub fn dummy() -> Self {
Self::custom().0
}
}
impl<I: Interface> fmt::Debug for Addr<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Addr")
.field("open", &!self.tx.is_closed())
.field("queue_size", &self.queue_size.load(Ordering::Relaxed))
.finish()
}
}
// Manually derive `Clone` since we do not require `I: Clone` and the Clone derive adds this
// constraint.
impl<I: Interface> Clone for Addr<I> {
fn clone(&self) -> Self {
Self {
tx: self.tx.clone(),
queue_size: self.queue_size.clone(),
}
}
}
impl<I, M> SendDispatch<M> for Addr<I>
where
I: Interface + FromMessage<M>,
{
type Response = <I as FromMessage<M>>::Response;
fn send(&self, message: M) -> <Self::Response as MessageResponse>::Output {
Addr::send(self, message)
}
fn to_trait_object(&self) -> Box<dyn SendDispatch<M, Response = Self::Response>> {
Box::new(self.clone())
}
}
/// Inbound channel for messages sent through an [`Addr`].
///
/// This channel is meant to be polled in a [`Service`].
///
/// Instances are created automatically when [spawning](ServiceRunner::start) a service, or can be
/// created through [`channel`]. The channel closes when all associated [`Addr`]s are dropped.
pub struct Receiver<I: Interface> {
rx: mpsc::UnboundedReceiver<I>,
name: &'static str,
interval: tokio::time::Interval,
queue_size: Arc<AtomicU64>,
}
impl<I: Interface> Receiver<I> {
/// Receives the next value for this receiver.
///
/// This method returns `None` if the channel has been closed and there are
/// no remaining messages in the channel's buffer. This indicates that no
/// further values can ever be received from this `Receiver`. The channel is
/// closed when all senders have been dropped.
///
/// If there are no messages in the channel's buffer, but the channel has
/// not yet been closed, this method will sleep until a message is sent or
/// the channel is closed.
pub async fn recv(&mut self) -> Option<I> {
loop {
tokio::select! {
biased;
_ = self.interval.tick() => {
let backlog = self.queue_size.load(Ordering::Relaxed);
relay_statsd::metric!(
gauge(SystemGauges::ServiceBackPressure) = backlog,
service = self.name
);
},
message = self.rx.recv() => {
self.queue_size.fetch_sub(1, Ordering::SeqCst);
return message;
},
}
}
}
}
impl<I: Interface> fmt::Debug for Receiver<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Receiver")
.field("name", &self.name)
.field("queue_size", &self.queue_size.load(Ordering::Relaxed))
.finish()
}
}
/// Creates an unbounded channel for communicating with a [`Service`].
///
/// The `Addr` as the sending part provides public access to the service, while the `Receiver`
/// should remain internal to the service.
pub fn channel<I: Interface>(name: &'static str) -> (Addr<I>, Receiver<I>) {
let queue_size = Arc::new(AtomicU64::new(0));
let (tx, rx) = mpsc::unbounded_channel();
let addr = Addr {
tx,
queue_size: queue_size.clone(),
};
let mut interval = tokio::time::interval(BACKLOG_INTERVAL);
interval.set_missed_tick_behavior(MissedTickBehavior::Skip);
let receiver = Receiver {
rx,
name,
interval,
queue_size,
};
(addr, receiver)
}
/// An asynchronous unit responding to messages.
///
/// Services receive messages conforming to some [`Interface`] through an [`Addr`] and handle them
/// one by one. Internally, services are free to concurrently process these messages or not, most
/// probably should.
///
/// Individual messages can have a response which will be sent once the message is handled by the
/// service. The sender can asynchronously await the responses of such messages.
///
/// To start a service, create a service runner and call [`ServiceRunner::start`].
///
/// # Implementing Services
///
/// The standard way to implement services is through the `run` function. It receives an inbound
/// channel for all messages sent through the service's address. Note that this function is
/// synchronous, so that this needs to spawn at least one task internally:
///
/// ```no_run
/// use relay_system::{FromMessage, Interface, NoResponse, Receiver, Service, ServiceRunner};
///
/// struct MyMessage;
///
/// impl Interface for MyMessage {}
///
/// impl FromMessage<Self> for MyMessage {
/// type Response = NoResponse;
///
/// fn from_message(message: Self, _: ()) -> Self {
/// message
/// }
/// }
///
/// struct MyService;
///
/// impl Service for MyService {
/// type Interface = MyMessage;
///
/// async fn run(self, mut rx: Receiver<Self::Interface>) {
/// while let Some(message) = rx.recv().await {
/// // handle the message
/// }
/// }
/// }
///
/// let addr = ServiceRunner::new().start(MyService);
/// ```
///
/// ## Debounce and Caching
///
/// Services that cache or debounce their responses can benefit from the [`BroadcastResponse`]
/// behavior. To use this behavior, implement the message and interface identical to
/// [`AsyncResponse`] above. This will provide a different sender type that can be converted into a
/// channel to debounce responses. It is still possible to send values directly via the sender
/// without a broadcast channel.
///
/// ```
/// use std::collections::btree_map::{BTreeMap, Entry};
/// use relay_system::{BroadcastChannel, BroadcastSender};
///
/// // FromMessage implementation using BroadcastResponse omitted for brevity.
///
/// struct MyService {
/// cache: BTreeMap<u32, String>,
/// channels: BTreeMap<u32, BroadcastChannel<String>>,
/// }
///
/// impl MyService {
/// fn handle_message(&mut self, id: u32, sender: BroadcastSender<String>) {
/// if let Some(cached) = self.cache.get(&id) {
/// sender.send(cached.clone());
/// return;
/// }
///
/// match self.channels.entry(id) {
/// Entry::Vacant(entry) => {
/// entry.insert(sender.into_channel());
/// // Start async computation here.
/// }
/// Entry::Occupied(mut entry) => {
/// entry.get_mut().attach(sender);
/// }
/// }
/// }
///
/// fn finish_compute(&mut self, id: u32, value: String) {
/// if let Some(channel) = self.channels.remove(&id) {
/// channel.send(value.clone());
/// }
///
/// self.cache.insert(id, value);
/// }
/// }
/// ```
///
pub trait Service: Sized {
/// The interface of messages this service implements.
///
/// The interface can be a single message type or an enumeration of all the messages that
/// can be handled by this service.
type Interface: Interface;
/// Defines the main task of this service.
///
/// `run` typically contains a loop that reads from `rx`, or a `select!` that reads
/// from multiple sources at once.
fn run(self, rx: Receiver<Self::Interface>) -> impl Future<Output = ()> + Send + 'static;
/// Starts the service in the current runtime and returns an address for it.
///
/// The service runs in a detached tokio task that cannot be joined on. This is mainly useful
/// for tests.
fn start_detached(self) -> Addr<Self::Interface> {
let (addr, rx) = channel(Self::name());
spawn(TaskId::for_service::<Self>(), self.run(rx));
addr
}
/// Returns a unique name for this service implementation.
///
/// This is used for internal diagnostics and uses the fully qualified type name of the service
/// implementor by default.
fn name() -> &'static str {
std::any::type_name::<Self>()
}
}
/// Keeps track of running services.
///
/// Exposes information about crashed services.
#[derive(Debug, Default)]
pub struct ServiceRunner(FuturesUnordered<JoinHandle<()>>);
impl ServiceRunner {
/// Creates a new service runner.
pub fn new() -> Self {
Self(FuturesUnordered::new())
}
/// Starts a service and starts tracking its join handle, exposing an [Addr] for message passing.
pub fn start<S: Service>(&mut self, service: S) -> Addr<S::Interface> {
let (addr, rx) = channel(S::name());
self.start_with(service, rx);
addr
}
/// Starts a service and starts tracking its join handle, given a predefined receiver.
pub fn start_with<S: Service>(&mut self, service: S, rx: Receiver<S::Interface>) {
self.0
.push(spawn(TaskId::for_service::<S>(), service.run(rx)));
}
/// Awaits until all services have finished.
///
/// Panics if one of the spawned services has panicked.
pub async fn join(&mut self) {
while let Some(res) = self.0.next().await {
if let Err(e) = res {
if e.is_panic() {
// Re-trigger panic to terminate the process:
std::panic::resume_unwind(e.into_panic());
}
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
struct MockMessage;
impl Interface for MockMessage {}
impl FromMessage<Self> for MockMessage {
type Response = NoResponse;
fn from_message(message: Self, _: ()) -> Self {
message
}
}
struct MockService;
impl Service for MockService {
type Interface = MockMessage;
async fn run(self, mut rx: Receiver<Self::Interface>) {
while rx.recv().await.is_some() {
tokio::time::sleep(BACKLOG_INTERVAL * 2).await;
}
}
fn name() -> &'static str {
"mock"
}
}
#[test]
fn test_backpressure_metrics() {
let rt = tokio::runtime::Builder::new_current_thread()
.enable_time()
.build()
.unwrap();
let _guard = rt.enter();
tokio::time::pause();
// Mock service takes 2 * BACKLOG_INTERVAL for every message
let addr = MockService.start_detached();
// Advance the timer by a tiny offset to trigger the first metric emission.
let captures = relay_statsd::with_capturing_test_client(|| {
rt.block_on(async {
tokio::time::sleep(Duration::from_millis(10)).await;
})
});
assert_eq!(captures, ["service.back_pressure:0|g|#service:mock"]);
// Send messages and advance to 0.5 * INTERVAL. No metrics expected at this point.
let captures = relay_statsd::with_capturing_test_client(|| {
rt.block_on(async {
addr.send(MockMessage); // will be pulled immediately
addr.send(MockMessage);
addr.send(MockMessage);
tokio::time::sleep(BACKLOG_INTERVAL / 2).await;
})
});
assert!(captures.is_empty());
// Advance to 6.5 * INTERVAL. The service should pull the first message immediately, another
// message every 2 INTERVALS. The messages are fully handled after 6 INTERVALS, but we
// cannot observe that since the last message exits the queue at 4.
let captures = relay_statsd::with_capturing_test_client(|| {
rt.block_on(async {
tokio::time::sleep(BACKLOG_INTERVAL * 6).await;
})
});
assert_eq!(
captures,
[
"service.back_pressure:2|g|#service:mock", // 2 * INTERVAL
"service.back_pressure:1|g|#service:mock", // 4 * INTERVAL
"service.back_pressure:0|g|#service:mock", // 6 * INTERVAL
]
);
}
}