relay_server/services/upstream.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
//! Service to communicate with the upstream.
//!
//! Most importantly, this module declares the [`UpstreamRelay`] service and its main implementation
//! [`UpstreamRelayService`] along with messages to communicate with the service. Please look at
//! service-level docs for more information.
use std::borrow::Cow;
use std::collections::VecDeque;
use std::fmt;
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use std::time::Duration;
use bytes::Bytes;
use itertools::Itertools;
use relay_auth::{RegisterChallenge, RegisterRequest, RegisterResponse, Registration};
use relay_config::{Config, Credentials, RelayMode};
use relay_quotas::{
DataCategories, QuotaScope, RateLimit, RateLimitScope, RateLimits, ReasonCode, RetryAfter,
Scoping,
};
use relay_system::{
AsyncResponse, FromMessage, Interface, MessageResponse, NoResponse, Sender, Service,
};
use reqwest::header;
pub use reqwest::Method;
use serde::de::DeserializeOwned;
use serde::Serialize;
use tokio::sync::mpsc;
use tokio::time::Instant;
use crate::http::{HttpError, Request, RequestBuilder, Response, StatusCode};
use crate::statsd::{RelayHistograms, RelayTimers};
use crate::utils::{self, ApiErrorResponse, RelayErrorAction, RetryBackoff};
/// Rate limits returned by the upstream.
///
/// Upstream rate limits can come in two forms:
/// - `Retry-After` header with a generic timeout for all categories.
/// - `X-Sentry-Rate-Limits` header with fine-grained information on applied rate limits.
///
/// These limits do not carry scope information. Use `UpstreamRateLimits::scope` to attach scope
/// identifiers and return a fully populated `RateLimits` instance.
#[derive(Debug, Clone)]
pub struct UpstreamRateLimits {
retry_after: RetryAfter,
rate_limits: String,
}
impl UpstreamRateLimits {
/// Creates an empty `UpstreamRateLimits` instance.
fn new() -> Self {
Self {
retry_after: RetryAfter::from_secs(0),
rate_limits: String::new(),
}
}
/// Adds the `Retry-After` header to this rate limits instance.
fn retry_after(mut self, header: Option<&str>) -> Self {
if let Some(retry_after) = header.and_then(|s| s.parse().ok()) {
self.retry_after = retry_after;
}
self
}
/// Adds the `X-Sentry-Rate-Limits` header to this instance.
///
/// If multiple header values are given, this header should be joined. If the header is empty,
/// an empty string should be passed.
fn rate_limits(mut self, header: String) -> Self {
self.rate_limits = header;
self
}
/// Creates a scoped rate limit instance based on the provided `Scoping`.
pub fn scope(self, scoping: &Scoping) -> RateLimits {
// Try to parse the `X-Sentry-Rate-Limits` header in the most lenient way possible. If
// anything goes wrong, skip over the invalid parts.
let mut rate_limits = utils::parse_rate_limits(scoping, &self.rate_limits);
// If there are no new-style rate limits in the header, fall back to the `Retry-After`
// header. Create a default rate limit that only applies to the current data category at the
// most specific scope (Key).
// One example of such a generic rate limit is the anti-abuse nginx layer used by SaaS.
if !rate_limits.is_limited() {
rate_limits.add(RateLimit {
categories: DataCategories::new(),
scope: RateLimitScope::for_quota(scoping, QuotaScope::Key),
reason_code: Some(ReasonCode::new("generic")),
retry_after: self.retry_after,
namespaces: Default::default(),
});
}
rate_limits
}
}
/// An error returned from [`SendRequest`] and [`SendQuery`].
#[derive(Debug, thiserror::Error)]
pub enum UpstreamRequestError {
#[error("attempted to send upstream request without credentials configured")]
NoCredentials,
/// As opposed to HTTP variant this contains all network errors.
#[error("could not send request to upstream")]
SendFailed(#[from] reqwest::Error),
/// Likely a bad HTTP status code or unparseable response.
#[error("could not send request")]
Http(#[from] HttpError),
#[error("upstream requests rate limited")]
RateLimited(UpstreamRateLimits),
#[error("upstream request returned error {0}")]
ResponseError(StatusCode, #[source] ApiErrorResponse),
#[error("channel closed")]
ChannelClosed,
#[error("upstream permanently denied authentication")]
AuthDenied,
}
impl UpstreamRequestError {
/// Returns the status code of the HTTP request sent to the upstream.
///
/// If this error is the result of sending a request to the upstream, this method returns `Some`
/// with the status code. If the request could not be made or the error originates elsewhere,
/// this returns `None`.
fn status_code(&self) -> Option<StatusCode> {
match self {
UpstreamRequestError::ResponseError(code, _) => Some(*code),
UpstreamRequestError::Http(HttpError::Reqwest(e)) => e.status(),
_ => None,
}
}
/// Returns `true` if the error indicates a network downtime.
fn is_network_error(&self) -> bool {
match self {
Self::SendFailed(_) => true,
Self::ResponseError(code, _) => matches!(code.as_u16(), 502..=504),
Self::Http(http) => http.is_network_error(),
_ => false,
}
}
/// Returns `true` if the upstream has permanently rejected this Relay.
///
/// This Relay should cease communication with the upstream and may shut down.
fn is_permanent_rejection(&self) -> bool {
match self {
Self::ResponseError(status_code, response) => {
*status_code == StatusCode::FORBIDDEN
&& response.relay_action() == RelayErrorAction::Stop
}
_ => false,
}
}
/// Returns `true` if the request was received by the upstream.
///
/// Despite resulting in an error, the server has received and acknowledged the request. This
/// includes rate limits (status code 429), and bad payloads (4XX), but not network errors
/// (502-504).
pub fn is_received(&self) -> bool {
match self {
// Rate limits are a special case of `ResponseError(429, _)`.
Self::RateLimited(_) => true,
// Everything except network errors indicates the upstream has handled this request.
Self::ResponseError(_, _) | Self::Http(_) => !self.is_network_error(),
// Remaining kinds indicate a failure to send the request.
Self::NoCredentials | Self::SendFailed(_) | Self::ChannelClosed | Self::AuthDenied => {
false
}
}
}
/// Returns a categorized description of the error.
///
/// This is used for metrics and logging.
fn description(&self) -> &'static str {
match self {
UpstreamRequestError::NoCredentials => "credentials",
UpstreamRequestError::SendFailed(_) => "send_failed",
UpstreamRequestError::Http(HttpError::Io(_)) => "payload_failed",
UpstreamRequestError::Http(HttpError::Json(_)) => "invalid_json",
UpstreamRequestError::Http(HttpError::Reqwest(_)) => "reqwest_error",
UpstreamRequestError::Http(HttpError::Overflow) => "overflow",
UpstreamRequestError::RateLimited(_) => "rate_limited",
UpstreamRequestError::ResponseError(_, _) => "response_error",
UpstreamRequestError::ChannelClosed => "channel_closed",
UpstreamRequestError::AuthDenied => "auth_denied",
}
}
}
/// Checks the authentication state with the upstream.
///
/// In static and proxy mode, Relay does not require authentication and `IsAuthenticated` always
/// returns `true`. Otherwise, this message retrieves the current state of authentication:
///
/// - Initially, Relay is unauthenticated until it has established connection.
/// - If this Relay is not known by the upstream, it remains unauthenticated indefinitely.
/// - Once Relay has registered, this message reports `true`.
/// - In periodic intervals Relay re-authenticates, which may drop authentication temporarily.
#[derive(Debug)]
pub struct IsAuthenticated;
/// Returns whether Relay is in an outage state.
///
/// On repeated failure to submit requests to the upstream, the upstream service moves into an
/// outage state. During this phase, no requests or retries are performed and all newly submitted
/// [`SendRequest`] and [`SendQuery`] messages are put into the queue. Once connection is
/// reestablished, requests resume in FIFO order.
///
/// This message resolves to `true` if Relay is in outage mode and `false` if the service is
/// performing regular operation.
#[derive(Debug)]
pub struct IsNetworkOutage;
/// Priority of an upstream request.
///
/// See [`UpstreamRequest::priority`] for more information.
#[derive(Clone, Copy, Debug)]
pub enum RequestPriority {
/// High priority, low volume messages (e.g. ProjectConfig, ProjectStates, Registration messages).
High,
/// Low priority, high volume messages (e.g. Events and Outcomes).
Low,
}
impl RequestPriority {
/// The name of the priority for logging and metrics.
fn name(&self) -> &'static str {
match self {
RequestPriority::High => "high",
RequestPriority::Low => "low",
}
}
}
impl fmt::Display for RequestPriority {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.name())
}
}
/// Represents a generic HTTP request to be sent to the upstream.
pub trait UpstreamRequest: Send + Sync + fmt::Debug {
/// The HTTP method of the request.
fn method(&self) -> Method;
/// The path relative to the upstream.
fn path(&self) -> Cow<'_, str>;
/// Whether this request should retry on network errors.
///
/// Defaults to `true` and should be disabled if there is an external retry mechanism. Note that
/// failures other than network errors will **not** be retried.
fn retry(&self) -> bool {
true
}
/// The queueing priority of the request.
///
/// - High priority requests are always sent and retried first.
/// - Low priority requests are sent if no high-priority messages are pending in the queue.
/// This also applies to retries: A low-priority message is only sent if there are no
/// high-priority requests waiting.
///
/// Within the same priority, requests are delivered in FIFO order.
///
/// Defaults to [`Low`](RequestPriority::Low).
fn priority(&self) -> RequestPriority {
RequestPriority::Low
}
/// Controls whether request errors should be intercepted.
///
/// By default, error codes from responses will be intercepted and returned as
/// [`UpstreamRequestError`]. This also includes parsing of the request body for diagnostics.
/// Return `false` to disable this behavior and receive the verbatim response.
fn intercept_status_errors(&self) -> bool {
true
}
/// Add the `X-Sentry-Relay-Id` header to the outgoing request.
///
/// This header is used for authentication with the upstream and should be enabled only for
/// endpoints that require it.
///
/// Defaults to `true`.
fn set_relay_id(&self) -> bool {
true
}
/// Add the `X-Sentry-Relay-Signature` header to the outgoing request.
///
/// When no signature should be added, this method should return `None`. Otherwise, this method
/// should return the payload to sign. For requests with content encoding, this must be the
/// **uncompressed** payload.
///
/// This requires configuration of the Relay's credentials. If the credentials are not
/// configured, the request will fail with [`UpstreamRequestError::NoCredentials`].
///
/// Defaults to `None`.
fn sign(&mut self) -> Option<Bytes> {
None
}
/// Returns the name of the logical route.
///
/// This is used for internal metrics and logging. Other than the path, this cannot contain
/// dynamic elements and should be globally unique.
fn route(&self) -> &'static str;
/// Callback to apply configuration to the request.
///
/// This hook is called at least once before `build`. It can be used to include additional
/// properties from Relay's config in the Request before it is sent or handled if during request
/// creation time the configuration is not available.
///
/// This method is optional and defaults to a no-op.
fn configure(&mut self, _config: &Config) {}
/// Callback to build the outgoing web request.
///
/// This callback populates the initialized request with headers and a request body.
///
/// Note that this function can be called repeatedly if [`retry`](UpstreamRequest::retry)
/// returns `true`. This function should therefore not move out of the request struct, but can
/// use it to memoize heavy computation.
fn build(&mut self, _builder: &mut RequestBuilder) -> Result<(), HttpError> {
Ok(())
}
/// Callback to complete an HTTP request.
///
/// This callback receives the response or error. At time of invocation, the response body has
/// not been consumed. The response body or derived information can then be sent into a channel.
fn respond(
self: Box<Self>,
result: Result<Response, UpstreamRequestError>,
) -> Pin<Box<dyn Future<Output = ()> + Send + Sync>>;
}
/// Sends a [request](UpstreamRequest) to the upstream and resolves the response.
///
/// This message is fire-and-forget. The result of sending the request is passed to the
/// [`UpstreamRequest::respond`] method, which can be used to process it and send it to a dedicated
/// channel.
#[derive(Debug)]
pub struct SendRequest<T: UpstreamRequest>(pub T);
/// Higher-level version of an [`UpstreamRequest`] with JSON request and response payloads.
///
/// The struct that implements the `UpstreamQuery` type has to be serializable and will be used as
/// JSON request body. The response body struct is declared via the associated `Response` type.
pub trait UpstreamQuery: Serialize + Send + Sync + fmt::Debug {
/// The response type that will be deserialized from successful queries.
type Response: DeserializeOwned + Send;
/// The HTTP method of the query.
fn method(&self) -> Method;
/// The path relative to the upstream.
fn path(&self) -> Cow<'static, str>;
/// Whether this query should retry on network errors.
///
/// This should be disabled if there is an external retry mechnism. Note that failures other
/// than network errors will **not** be retried.
fn retry() -> bool;
/// The queueing priority of the query.
///
/// - High priority queries are always sent and retried first.
/// - Low priority queries are sent if no high-priority messages are pending in the queue.
/// This also applies to retries: A low-priority message is only sent if there are no
/// high-priority requests waiting.
///
/// Within the same priority, queries are delivered in FIFO order.
///
/// Defaults to [`Low`](RequestPriority::Low).
fn priority() -> RequestPriority {
RequestPriority::Low
}
/// Returns the name of the logical route.
///
/// This is used for internal metrics and logging. Other than the path, this cannot contain
/// dynamic elements and should be globally unique.
fn route(&self) -> &'static str;
}
/// Transmitting end of the return channel for [`UpstreamQuery`].
type QuerySender<T> = Sender<Result<<T as UpstreamQuery>::Response, UpstreamRequestError>>;
/// Memoized implementation of [`UpstreamRequest`] for an [`UpstreamQuery`].
///
/// This can be used to send queries as requests to the upstream. The request wraps an internal
/// channel to send responses to.
#[derive(Debug)]
struct UpstreamQueryRequest<T: UpstreamQuery> {
query: T,
body: Option<Bytes>,
max_response_size: usize,
sender: QuerySender<T>,
}
impl<T> UpstreamQueryRequest<T>
where
T: UpstreamQuery + 'static,
{
/// Wraps the given `query` in an [`UpstreamQuery`] implementation.
pub fn new(query: T, sender: QuerySender<T>) -> Self {
Self {
query,
body: None,
max_response_size: 0,
sender,
}
}
/// Memoize the serialized body for retries and signing.
fn body(&mut self) -> Result<Bytes, HttpError> {
let body = match self.body {
Some(ref body) => body,
None => self.body.insert(serde_json::to_vec(&self.query)?.into()),
};
Ok(body.clone())
}
}
impl<T> UpstreamRequest for UpstreamQueryRequest<T>
where
T: UpstreamQuery + 'static,
{
fn retry(&self) -> bool {
T::retry()
}
fn priority(&self) -> RequestPriority {
T::priority()
}
fn intercept_status_errors(&self) -> bool {
true
}
fn set_relay_id(&self) -> bool {
true
}
fn sign(&mut self) -> Option<Bytes> {
// Computing the body is practically infallible since we're serializing standard structures
// into a string. Even if it fails, `sign` is called after `build` and the error will be
// reported there.
self.body().ok()
}
fn method(&self) -> Method {
self.query.method()
}
fn path(&self) -> Cow<'_, str> {
self.query.path()
}
fn route(&self) -> &'static str {
self.query.route()
}
fn configure(&mut self, config: &Config) {
// This config attribute is needed during `respond`, which does not have access to the
// config. For this reason, we need to store it on the request struct.
self.max_response_size = config.max_api_payload_size();
}
fn build(&mut self, builder: &mut RequestBuilder) -> Result<(), HttpError> {
let body = self.body()?;
relay_statsd::metric!(
histogram(RelayHistograms::UpstreamQueryBodySize) = body.len() as u64
);
builder
.header(header::CONTENT_TYPE, b"application/json")
.body(body.clone());
Ok(())
}
fn respond(
self: Box<Self>,
result: Result<Response, UpstreamRequestError>,
) -> Pin<Box<dyn Future<Output = ()> + Send + Sync>> {
Box::pin(async move {
let result = match result {
Ok(response) => response
.json(self.max_response_size)
.await
.map_err(UpstreamRequestError::Http),
Err(error) => Err(error),
};
self.sender.send(result)
})
}
}
/// Sends a [query](UpstreamQuery) to the upstream and resolves the response.
///
/// The result of the query is resolved asynchronously as response to the message. The query will
/// still be performed even if the response is not awaited.
#[derive(Debug)]
pub struct SendQuery<T: UpstreamQuery>(pub T);
/// Communication with the upstream via HTTP.
///
/// This service can send two main types of requests to the upstream, which can in turn be a Relay
/// or the Sentry webserver:
///
/// - [`SendRequest`] sends a plain HTTP request to the upstream that can be configured and handled
/// freely. Request implementations specify their priority and whether they should be retried
/// automatically by the upstream service.
/// - [`SendQuery`] sends a higher-level request with a standardized JSON body and resolves to a
/// JSON response. The upstream service will automatically sign the message with its private key
/// for authentication.
///
/// The upstream is also responsible to maintain the connection with the upstream. There are two
/// main messages to inquire about the connection state:
///
/// - [`IsAuthenticated`]
/// - [`IsNetworkOutage`]
#[derive(Debug)]
pub enum UpstreamRelay {
/// Checks the authentication state with the upstream.
IsAuthenticated(IsAuthenticated, Sender<bool>),
/// Returns whether Relay is in an outage state.
IsNetworkOutage(IsNetworkOutage, Sender<bool>),
/// Sends a [request](SendRequest) or [query](SendQuery) to the upstream.
SendRequest(Box<dyn UpstreamRequest>),
}
impl Interface for UpstreamRelay {}
impl FromMessage<IsAuthenticated> for UpstreamRelay {
type Response = AsyncResponse<bool>;
fn from_message(message: IsAuthenticated, sender: Sender<bool>) -> Self {
Self::IsAuthenticated(message, sender)
}
}
impl FromMessage<IsNetworkOutage> for UpstreamRelay {
type Response = AsyncResponse<bool>;
fn from_message(message: IsNetworkOutage, sender: Sender<bool>) -> Self {
Self::IsNetworkOutage(message, sender)
}
}
impl<T> FromMessage<SendRequest<T>> for UpstreamRelay
where
T: UpstreamRequest + 'static,
{
type Response = NoResponse;
fn from_message(message: SendRequest<T>, _: ()) -> Self {
let SendRequest(request) = message;
Self::SendRequest(Box::new(request))
}
}
impl<T> FromMessage<SendQuery<T>> for UpstreamRelay
where
T: UpstreamQuery + 'static,
{
type Response = AsyncResponse<Result<T::Response, UpstreamRequestError>>;
fn from_message(message: SendQuery<T>, sender: QuerySender<T>) -> Self {
let SendQuery(query) = message;
Self::SendRequest(Box::new(UpstreamQueryRequest::new(query, sender)))
}
}
/// Captures statsd metrics for a completed upstream request.
fn emit_response_metrics(
send_start: Instant,
entry: &Entry,
send_result: &Result<Response, UpstreamRequestError>,
) {
let description = match send_result {
Ok(_) => "success",
Err(e) => e.description(),
};
let status_code = match send_result {
Ok(ref response) => Some(response.status()),
Err(ref error) => error.status_code(),
};
let status_str = status_code.as_ref().map(|c| c.as_str()).unwrap_or("-");
relay_statsd::metric!(
timer(RelayTimers::UpstreamRequestsDuration) = send_start.elapsed(),
result = description,
status_code = status_str,
route = entry.request.route(),
retries = match entry.retries {
0 => "0",
1 => "1",
2 => "2",
3..=10 => "few",
_ => "many",
},
);
relay_statsd::metric!(
histogram(RelayHistograms::UpstreamRetries) = entry.retries as u64,
result = description,
status_code = status_str,
route = entry.request.route(),
);
}
/// Checks the status of the network connection with the upstream server.
#[derive(Debug)]
struct GetHealthCheck;
impl UpstreamRequest for GetHealthCheck {
fn method(&self) -> Method {
Method::GET
}
fn path(&self) -> Cow<'_, str> {
Cow::Borrowed("/api/0/relays/live/")
}
fn retry(&self) -> bool {
false
}
fn priority(&self) -> RequestPriority {
unreachable!("sent directly to client")
}
fn set_relay_id(&self) -> bool {
true
}
fn intercept_status_errors(&self) -> bool {
true
}
fn route(&self) -> &'static str {
"check_live"
}
fn respond(
self: Box<Self>,
result: Result<Response, UpstreamRequestError>,
) -> Pin<Box<dyn Future<Output = ()> + Send + Sync>> {
Box::pin(async {
if let Ok(mut response) = result {
response.consume().await.ok();
}
})
}
}
impl UpstreamQuery for RegisterRequest {
type Response = RegisterChallenge;
fn method(&self) -> Method {
Method::POST
}
fn path(&self) -> Cow<'static, str> {
Cow::Borrowed("/api/0/relays/register/challenge/")
}
fn priority() -> RequestPriority {
unreachable!("sent directly to client")
}
fn retry() -> bool {
false
}
fn route(&self) -> &'static str {
"challenge"
}
}
impl UpstreamQuery for RegisterResponse {
type Response = Registration;
fn method(&self) -> Method {
Method::POST
}
fn path(&self) -> Cow<'static, str> {
Cow::Borrowed("/api/0/relays/register/response/")
}
fn priority() -> RequestPriority {
unreachable!("sent directly to client")
}
fn retry() -> bool {
false
}
fn route(&self) -> &'static str {
"response"
}
}
/// A shared, asynchronous client to build and execute requests.
///
/// The main way to send a request through this client is [`send`](Self::send).
///
/// This instance holds a shared reference internally and can be cloned directly, so it does not
/// have to be placed in an `Arc`.
#[derive(Debug, Clone)]
struct SharedClient {
config: Arc<Config>,
reqwest: reqwest::Client,
}
impl SharedClient {
/// Creates a new `SharedClient` instance.
pub fn build(config: Arc<Config>) -> Self {
let reqwest = reqwest::ClientBuilder::new()
.connect_timeout(config.http_connection_timeout())
.timeout(config.http_timeout())
// In the forward endpoint, this means that content negotiation is done twice, and the
// response body is first decompressed by the client, then re-compressed by the server.
.gzip(true)
// Enables async resolver through the `hickory-dns` crate, which uses an LRU cache for
// the resolved entries. This helps to limit the amount of requests made to upstream DNS
// server (important for K8s infrastructure).
.hickory_dns(true)
.build()
.unwrap();
Self { config, reqwest }
}
/// Builds the request in a non-blocking fashion.
///
/// This creates the request, adds internal headers, and invokes [`UpstreamRequest::build`]. The
/// build is invoked in a non-blocking fashion internally, so it can be called from an
/// asynchronous runtime.
fn build_request(
&self,
request: &mut dyn UpstreamRequest,
) -> Result<reqwest::Request, UpstreamRequestError> {
tokio::task::block_in_place(|| {
let url = self
.config
.upstream_descriptor()
.get_url(request.path().as_ref());
let host_header = self
.config
.http_host_header()
.unwrap_or_else(|| self.config.upstream_descriptor().host());
let mut builder = RequestBuilder::reqwest(self.reqwest.request(request.method(), url));
builder.header("Host", host_header.as_bytes());
if request.set_relay_id() {
if let Some(credentials) = self.config.credentials() {
builder.header("X-Sentry-Relay-Id", credentials.id.to_string());
}
}
request.build(&mut builder)?;
if let Some(payload) = request.sign() {
let credentials = self
.config
.credentials()
.ok_or(UpstreamRequestError::NoCredentials)?;
let signature = credentials.secret_key.sign(&payload);
builder.header("X-Sentry-Relay-Signature", signature.as_bytes());
}
match builder.finish() {
Ok(Request(client_request)) => Ok(client_request),
Err(e) => Err(e.into()),
}
})
}
/// Handles an HTTP response returned from the upstream.
///
/// If the response indicates success via 2XX status codes, `Ok(response)` is returned.
/// Otherwise, the response is consumed and an error is returned. If `intercept_status_errors`
/// is set to `true` on the request, depending on the status code and details provided in the
/// payload, one of the following errors is returned:
///
/// 1. `RateLimited` for a `429` status code.
/// 2. `ResponseError` in all other cases, containing the status and details.
async fn transform_response(
&self,
request: &dyn UpstreamRequest,
response: Response,
) -> Result<Response, UpstreamRequestError> {
let status = response.status();
if !request.intercept_status_errors() || status.is_success() {
return Ok(response);
}
let upstream_limits = if status == StatusCode::TOO_MANY_REQUESTS {
let retry_after = response
.get_header(header::RETRY_AFTER)
.and_then(|v| std::str::from_utf8(v).ok());
let rate_limits = response
.get_all_headers(utils::RATE_LIMITS_HEADER)
.iter()
.filter_map(|v| std::str::from_utf8(v).ok())
.join(", ");
let upstream_limits = UpstreamRateLimits::new()
.retry_after(retry_after)
.rate_limits(rate_limits);
Some(upstream_limits)
} else {
None
};
// At this point, we consume the Response. This means we need to consume the response
// payload stream, regardless of the status code. Parsing the JSON body may fail, which is a
// non-fatal failure as the upstream is not expected to always include a valid JSON
// response.
let json_result = response.json(self.config.max_api_payload_size()).await;
if let Some(upstream_limits) = upstream_limits {
Err(UpstreamRequestError::RateLimited(upstream_limits))
} else {
// Coerce the result into an empty `ApiErrorResponse` if parsing JSON did not succeed.
let api_response = json_result.unwrap_or_default();
Err(UpstreamRequestError::ResponseError(status, api_response))
}
}
/// Builds and sends a request to the upstream, returning either a response or the error.
pub async fn send(
&self,
request: &mut dyn UpstreamRequest,
) -> Result<Response, UpstreamRequestError> {
request.configure(&self.config);
let client_request = self.build_request(request)?;
let response = self.reqwest.execute(client_request).await?;
self.transform_response(request, Response(response)).await
}
/// Convenience method to send a query to the upstream and await the result.
pub async fn send_query<T>(&self, query: T) -> Result<T::Response, UpstreamRequestError>
where
T: UpstreamQuery + 'static,
{
let (sender, receiver) = AsyncResponse::channel();
let mut request = Box::new(UpstreamQueryRequest::new(query, sender));
let result = self.send(request.as_mut()).await;
request.respond(result).await;
receiver
.await
.unwrap_or(Err(UpstreamRequestError::ChannelClosed))
}
}
/// An upstream request enqueued in the [`UpstreamQueue`].
///
/// This is the primary type with which requests are passed around the service.
#[derive(Debug)]
struct Entry {
/// The inner request.
pub request: Box<dyn UpstreamRequest>,
/// The number of retries.
///
/// This starts with `0` and is incremented every time a request is placed back into the queue
/// following a network error.
pub retries: usize,
}
impl Entry {
/// Creates a pristine queue `Entry`.
pub fn new(request: Box<dyn UpstreamRequest>) -> Self {
Self {
request,
retries: 0,
}
}
}
/// Queue utility for the [`UpstreamRelayService`].
///
/// Requests are queued and delivered according to their [`UpstreamRequest::priority`]. This queue
/// is synchronous and managed by the [`UpstreamBroker`].
#[derive(Debug)]
struct UpstreamQueue {
/// High priority queue.
high: VecDeque<Entry>,
/// Low priority queue.
low: VecDeque<Entry>,
/// High priority retry queue.
retry_high: VecDeque<Entry>,
/// Low priority retry queue.
retry_low: VecDeque<Entry>,
/// Retries should not be dequeued before this instant.
///
/// This retry increments by the constant `retry_after` instead of backoff,
/// since it only kicks in for a short period of time before Relay gets into
/// network outage mode (see [`IsNetworkOutage`]).
next_retry: Instant,
/// Time to wait before retrying another request from the retry queue.
retry_interval: Duration,
}
impl UpstreamQueue {
/// Creates an empty upstream queue.
pub fn new(retry_interval: Duration) -> Self {
Self {
high: VecDeque::new(),
low: VecDeque::new(),
retry_high: VecDeque::new(),
retry_low: VecDeque::new(),
next_retry: Instant::now(),
retry_interval,
}
}
/// Returns the number of entries in the queue.
pub fn len(&self) -> usize {
self.high.len() + self.low.len() + self.retry_high.len() + self.retry_low.len()
}
/// Places an entry at the back of the queue.
///
/// Since entries are dequeued in FIFO order, this entry will be dequeued
/// last within its priority class; see
/// [`dequeue`][`UpstreamQueue::dequeue`] for more details.
pub fn enqueue(&mut self, entry: Entry) {
let priority = entry.request.priority();
match priority {
RequestPriority::High => self.high.push_back(entry),
RequestPriority::Low => self.low.push_back(entry),
}
relay_statsd::metric!(
histogram(RelayHistograms::UpstreamMessageQueueSize) = self.len() as u64,
priority = priority.name(),
attempt = "first"
);
}
/// Places an entry in the retry queue.
///
/// Entries are dequeued by (1) high/low priority and (2) FIFO order.
///
/// It also schedules the next retry time, based on the retry back off. The
/// retry queue is not dequeued until the next retry has elapsed.
pub fn retry(&mut self, entry: Entry) {
let priority = entry.request.priority();
match priority {
RequestPriority::High => self.retry_high.push_back(entry),
RequestPriority::Low => self.retry_low.push_back(entry),
};
self.next_retry = Instant::now() + self.retry_interval;
relay_statsd::metric!(
histogram(RelayHistograms::UpstreamMessageQueueSize) = self.len() as u64,
priority = priority.name(),
attempt = "retry"
);
}
/// Dequeues the entry with highest priority.
///
/// Highest priority entry is determined by (1) request priority and (2)
/// retries first.
pub fn dequeue(&mut self) -> Option<Entry> {
let should_retry = self.next_retry <= Instant::now();
if let Some(Some(entry)) = should_retry.then(|| self.retry_high.pop_front()) {
Some(entry)
} else if let Some(entry) = self.high.pop_front() {
Some(entry)
} else if let Some(Some(entry)) = should_retry.then(|| self.retry_low.pop_front()) {
Some(entry)
} else {
self.low.pop_front()
}
}
/// Starts retrying queued requests.
pub fn trigger_retries(&mut self) {
self.next_retry = Instant::now();
}
}
/// Possible authentication states for Relay.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
enum AuthState {
/// Relay is not authenticated and authentication has not started.
Unknown,
/// Relay is not authenticated and authentication is in progress.
Registering,
/// The connection is healthy and authenticated in managed mode.
///
/// This state is also used as default for Relays that do not require authentication based on
/// their configuration.
Registered,
/// Relay is authenticated and renewing the registration lease. During this process, Relay
/// remains authenticated, unless an error occurs.
Renewing,
/// Authentication has been permanently denied by the Upstream. Do not attempt to retry.
Denied,
}
impl AuthState {
/// Returns the initial `AuthState` based on configuration.
///
/// - Relays in managed mode require authentication. The state is set to `AuthState::Unknown`.
/// - Other Relays do not require authentication. The state is set to `AuthState::Registered`.
pub fn init(config: &Config) -> Self {
match config.relay_mode() {
RelayMode::Managed => AuthState::Unknown,
_ => AuthState::Registered,
}
}
/// Returns `true` if the state is considered authenticated.
pub fn is_authenticated(self) -> bool {
matches!(self, AuthState::Registered | AuthState::Renewing)
}
}
/// Indicates whether an request was sent to the upstream.
#[derive(Clone, Copy, Debug)]
enum RequestOutcome {
/// The request was dropped due to a network outage.
Dropped,
/// The request was received by the upstream.
///
/// This does not automatically mean that the request was successfully accepted. It could also
/// have been rate limited or rejected as invalid.
Received,
}
/// Internal message of the upstream's [`UpstreamBroker`].
///
/// These messages are used to serialize state mutations to the broker's internals. They are emitted
/// by the auth monitor, connection monitor, and internal tasks for request handling.
#[derive(Debug)]
enum Action {
/// A dropped needs to be retried.
///
/// The entry is placed on the front of the [`UpstreamQueue`].
Retry(Entry),
/// Notifies completion of a request with a given outcome.
///
/// Dropped request that need retries will additionally invoke the [`Retry`](Self::Retry)
/// action.
Complete(RequestOutcome),
/// Previously lost connection has been regained.
///
/// This message is delivered to the [`ConnectionMonitor`] instance.
Connected,
/// The auth monitor indicates a change in the authentication state.
///
/// The new auth state is mirrored in an internal field for immediate access.
UpdateAuth(AuthState),
}
type ActionTx = mpsc::UnboundedSender<Action>;
/// Service that establishes and maintains authentication.
///
/// In regular intervals, the service checks for authentication and notifies the upstream if the key
/// is no longer valid. This allows Sentry to reject registered Relays during runtim without
/// restarts.
///
/// The monitor updates subscribers via the an `Action` channel of all changes to the authentication
/// states.
#[derive(Debug)]
struct AuthMonitor {
config: Arc<Config>,
client: SharedClient,
state: AuthState,
tx: ActionTx,
}
impl AuthMonitor {
/// Returns the interval at which this Relay should renew authentication.
///
/// Returns `Some` if authentication should be retried. Returns `None` if authentication is
/// permanent.
fn renew_auth_interval(&self) -> Option<std::time::Duration> {
if self.config.processing_enabled() {
// processing relays do NOT re-authenticate
None
} else {
// only relays that have a configured auth-interval reauthenticate
self.config.http_auth_interval()
}
}
/// Updates the monitor's internal state and subscribers.
fn send_state(&mut self, state: AuthState) -> Result<(), UpstreamRequestError> {
self.state = state;
self.tx
.send(Action::UpdateAuth(state))
.map_err(|_| UpstreamRequestError::ChannelClosed)
}
/// Performs a single authentication pass.
///
/// Authentication consists of an initial request, a challenge, and a signed response including
/// the challenge. Throughout this sequence, the auth monitor transitions the authentication
/// state. If authentication succeeds, the state is set to [`AuthState::Registered`] at the end.
///
/// If any of the requests fail, this method returns an `Err` and leaves the last authentication
/// state in place.
async fn authenticate(
&mut self,
credentials: &Credentials,
) -> Result<(), UpstreamRequestError> {
relay_log::info!(
descriptor = %self.config.upstream_descriptor(),
"registering with upstream"
);
self.send_state(if self.state.is_authenticated() {
AuthState::Renewing
} else {
AuthState::Registering
})?;
let request = RegisterRequest::new(&credentials.id, &credentials.public_key);
let challenge = self.client.send_query(request).await?;
relay_log::debug!(token = challenge.token(), "got register challenge");
let response = challenge.into_response();
relay_log::debug!("sending register challenge response");
self.client.send_query(response).await?;
relay_log::info!("relay successfully registered with upstream");
self.send_state(AuthState::Registered)?;
Ok(())
}
/// Starts the authentication monitor's cycle.
///
/// Authentication starts immediately and then enters a loop of recurring reauthentication until
/// one of the following conditions is met:
///
/// - Authentication is not required based on the Relay's mode configuration.
/// - The upstream responded with a permanent rejection (auth denied).
/// - All subscibers have shut down and the action channel is closed.
pub async fn run(mut self) {
if self.config.relay_mode() != RelayMode::Managed {
return;
}
let config = self.config.clone();
let Some(credentials) = config.credentials() else {
// This is checked during setup by `check_config` and should never happen.
relay_log::error!("authentication called without credentials");
return;
};
let mut backoff = RetryBackoff::new(self.config.http_max_retry_interval());
loop {
match self.authenticate(credentials).await {
Ok(_) => {
backoff.reset();
match self.renew_auth_interval() {
Some(interval) => tokio::time::sleep(interval).await,
None => return,
}
}
Err(err) => {
if backoff.attempt() > 1 {
relay_log::error!(
error = &err as &dyn std::error::Error,
tags.attempts = backoff.attempt(),
"authentication encountered error",
);
}
// ChannelClosed indicates that there are no more listeners, so we stop
// authenticating.
if let UpstreamRequestError::ChannelClosed = err {
return;
}
if err.is_permanent_rejection() {
self.send_state(AuthState::Denied).ok();
return;
}
// If the authentication request fails due to any reason other than a network
// error, go back to `Registering` which indicates that this Relay is not
// authenticated, in case the state was `Renewing` before.
if !err.is_network_error() {
self.send_state(AuthState::Registering).ok();
}
// Even on network errors, retry authentication independently.
let backoff = backoff.next_backoff();
relay_log::debug!(
"scheduling authentication retry in {} seconds",
backoff.as_secs()
);
tokio::time::sleep(backoff).await;
}
};
}
}
}
/// Internal state of the [`ConnectionMonitor`].
#[derive(Debug)]
enum ConnectionState {
/// The connection is healthy.
Connected,
/// Network errors have been observed during the grace period.
///
/// The connection is still considered healthy and requests should be made to the upstream.
Interrupted(Instant),
/// The connection is interrupted and reconnection is in progress.
///
/// If the task has finished, connection should be considered `Connected`.
Reconnecting(tokio::task::JoinHandle<()>),
}
/// Maintains outage state of the connection to the upstream.
///
/// Use [`notify_error`](Self::notify_error) and [`reset_error`](Self::reset_error) to inform the
/// monitor of successful and failed requests. If errors persist throughout a grace period, the
/// monitor spawns a background task to re-establish connections. During this period,
/// [`is_stable`](Self::is_stable) returns `false` and no other requests should be made to the
/// upstream.
///
/// This state is synchronous and managed by the [`UpstreamBroker`].
#[derive(Debug)]
struct ConnectionMonitor {
state: ConnectionState,
client: SharedClient,
}
impl ConnectionMonitor {
/// Creates a new `ConnectionMonitor` in connected state.
pub fn new(client: SharedClient) -> Self {
Self {
state: ConnectionState::Connected,
client,
}
}
/// Resets `Reconnecting` if the connection task has completed.
fn clean_state(&mut self) -> &ConnectionState {
if let ConnectionState::Reconnecting(ref task) = self.state {
if task.is_finished() {
self.state = ConnectionState::Connected;
}
}
&self.state
}
/// Returns `true` if the connection is not in outage state.
pub fn is_stable(&mut self) -> bool {
match self.clean_state() {
ConnectionState::Connected => true,
ConnectionState::Interrupted(_) => true,
ConnectionState::Reconnecting(_) => false,
}
}
/// Returns `true` if the connection is in outage state.
pub fn is_outage(&mut self) -> bool {
!self.is_stable()
}
/// Performs connection attempts with exponential backoff until successful.
async fn connect(client: SharedClient, tx: ActionTx) {
let mut backoff = RetryBackoff::new(client.config.http_max_retry_interval());
loop {
let next_backoff = backoff.next_backoff();
relay_log::warn!("network outage, scheduling another check in {next_backoff:?}");
tokio::time::sleep(next_backoff).await;
match client.send(&mut GetHealthCheck).await {
// All errors that are not connection errors are considered a successful attempt
Err(e) if e.is_network_error() => continue,
_ => break,
}
}
tx.send(Action::Connected).ok();
}
/// Notifies the monitor of a request that resulted in a network error.
///
/// This starts a grace period if not already started. If a prior grace period has been
/// exceeded, the monitor spawns a background job to reestablish connection and notifies the
/// given `return_tx` on success.
///
/// This method does not block.
pub fn notify_error(&mut self, return_tx: &ActionTx) {
let now = Instant::now();
let first_error = match self.clean_state() {
ConnectionState::Connected => now,
ConnectionState::Interrupted(first) => *first,
ConnectionState::Reconnecting(_) => return,
};
self.state = ConnectionState::Interrupted(first_error);
// Only take action if we exceeded the grace period.
if first_error + self.client.config.http_outage_grace_period() <= now {
let return_tx = return_tx.clone();
let task = relay_system::spawn!(Self::connect(self.client.clone(), return_tx));
self.state = ConnectionState::Reconnecting(task);
}
}
/// Notifies the monitor of a request that was delivered to the upstream.
///
/// Resets the outage grace period and aborts connect background tasks.
pub fn reset_error(&mut self) {
if let ConnectionState::Reconnecting(ref task) = self.state {
task.abort();
}
self.state = ConnectionState::Connected;
}
}
/// Main broker of the [`UpstreamRelayService`].
///
/// This handles incoming public messages, internal actions, and maintains the upstream queue.
#[derive(Debug)]
struct UpstreamBroker {
client: SharedClient,
queue: UpstreamQueue,
auth_state: AuthState,
conn: ConnectionMonitor,
permits: usize,
action_tx: ActionTx,
}
impl UpstreamBroker {
/// Returns the next entry from the queue if the upstream is in a healthy state.
///
/// This returns `None` in any of the following conditions:
/// - Maximum request concurrency has been reached. A slot will be reclaimed through
/// [`Action::Complete`].
/// - The connection is in outage state and all outgoing requests are suspended. Outage state
/// will be reset through [`Action::Connected`].
/// - Relay is not authenticated, including failed renewals. Auth state will be updated through
/// [`Action::UpdateAuth`].
/// - The request queue is empty. New requests will be added through [`SendRequest`] or
/// [`SendQuery`] in the main message loop.
async fn next_request(&mut self) -> Option<Entry> {
if self.permits == 0 || self.conn.is_outage() || !self.auth_state.is_authenticated() {
return None;
}
let entry = self.queue.dequeue()?;
self.permits -= 1;
Some(entry)
}
/// Attempts to place a new request into the queue.
///
/// If authentication is permanently denied, the request will be failed immediately. In all
/// other cases, the request is enqueued and will wait for submission.
async fn enqueue(&mut self, request: Box<dyn UpstreamRequest>) {
if let AuthState::Denied = self.auth_state {
// This respond is near-instant because it should just send the error into the request's
// response channel. We do not expect that this blocks the broker.
request.respond(Err(UpstreamRequestError::AuthDenied)).await;
} else {
self.queue.enqueue(Entry::new(request));
}
}
/// Handler of the main message loop.
async fn handle_message(&mut self, message: UpstreamRelay) {
match message {
UpstreamRelay::IsAuthenticated(_, sender) => {
sender.send(self.auth_state.is_authenticated())
}
UpstreamRelay::IsNetworkOutage(_, sender) => sender.send(self.conn.is_outage()),
UpstreamRelay::SendRequest(request) => self.enqueue(request).await,
}
}
/// Spawns a request attempt.
///
/// The request will run concurrently with other spawned requests and notify the action channel
/// on completion.
fn execute(&self, mut entry: Entry) {
let client = self.client.clone();
let action_tx = self.action_tx.clone();
relay_system::spawn!(async move {
let send_start = Instant::now();
let result = client.send(entry.request.as_mut()).await;
emit_response_metrics(send_start, &entry, &result);
let status = match result {
Err(ref err) if err.is_network_error() => RequestOutcome::Dropped,
_ => RequestOutcome::Received,
};
match status {
RequestOutcome::Dropped if entry.request.retry() => {
entry.retries += 1;
action_tx.send(Action::Retry(entry)).ok();
}
_ => entry.request.respond(result).await,
}
// Send an action back to the action channel of the broker, which will invoke
// `handle_action`. This is to let the broker know in a synchronized fashion that the
// request has finished and may need to be retried (above).
action_tx.send(Action::Complete(status)).ok();
});
}
/// Marks completion of a running request and reclaims its slot.
fn complete(&mut self, status: RequestOutcome) {
self.permits += 1;
match status {
RequestOutcome::Dropped => self.conn.notify_error(&self.action_tx),
RequestOutcome::Received => {
self.conn.reset_error();
self.queue.trigger_retries();
}
}
}
/// Handler of the internal action channel.
fn handle_action(&mut self, action: Action) {
match action {
Action::Retry(request) => self.queue.retry(request),
Action::Complete(status) => self.complete(status),
Action::Connected => self.conn.reset_error(),
Action::UpdateAuth(state) => self.auth_state = state,
}
}
}
/// Implementation of the [`UpstreamRelay`] interface.
#[derive(Debug)]
pub struct UpstreamRelayService {
config: Arc<Config>,
}
impl UpstreamRelayService {
/// Creates a new `UpstreamRelay` instance.
pub fn new(config: Arc<Config>) -> Self {
// Broker and other actual components are implemented in the Service's `spawn_handler`.
Self { config }
}
}
impl Service for UpstreamRelayService {
type Interface = UpstreamRelay;
async fn run(self, mut rx: relay_system::Receiver<Self::Interface>) {
let Self { config } = self;
let client = SharedClient::build(config.clone());
// Channel for serialized communication from the auth monitor, connection monitor, and
// concurrent requests back to the broker.
let (action_tx, mut action_rx) = mpsc::unbounded_channel();
// Spawn a recurring background check for authentication. It terminates automatically if
// authentication is not required or rejected.
let auth = AuthMonitor {
config: config.clone(),
client: client.clone(),
state: AuthState::Unknown,
tx: action_tx.clone(),
};
relay_system::spawn!(auth.run());
// Main broker that serializes public and internal messages, as well as maintains connection
// and authentication state.
let mut broker = UpstreamBroker {
client: client.clone(),
queue: UpstreamQueue::new(config.http_retry_delay()),
auth_state: AuthState::init(&config),
conn: ConnectionMonitor::new(client),
permits: config.max_concurrent_requests(),
action_tx,
};
loop {
tokio::select! {
biased;
Some(action) = action_rx.recv() => broker.handle_action(action),
Some(request) = broker.next_request() => broker.execute(request),
Some(message) = rx.recv() => broker.handle_message(message).await,
else => break,
}
}
}
}